Automated Human-Readable Label Generation in Open Intent Discovery

被引:0
|
作者
Anderson, Grant [1 ,2 ]
Hart, Emma [1 ]
Gkatzia, Dimitra [1 ]
Beaver, Ian [2 ]
机构
[1] Edinburgh Napier Univ, Edinburgh, Midlothian, Scotland
[2] Verint Syst Ltd, New York, NY 10001 USA
来源
关键词
open intent discovery; label generation; plm prompting;
D O I
10.21437/Interspeech.2024-1351
中图分类号
学科分类号
摘要
The correct determination of user intent is key in dialog systems. However, an intent classifier often requires a large, labelled training dataset to identify a set of known intents. The creation of such a dataset is a complex and time-consuming task which usually involves humans applying clustering tools to unlabelled data, analysing the results, and creating human-readable labels for each cluster. While many Open Intent Discovery works tackle the problem of discovering clusters of common intent, few generate a human-readable label that can be used to make decisions in downstream systems. To address this, we introduce a novel candidate label extraction method then evaluate six combinations of candidate extraction and label selection methods on three datasets. We find that our extraction method produces more detailed labels than the alternatives and that high quality intent labels can be generated from unlabelled data without resorting to applying costly pre-trained language models.
引用
收藏
页码:3540 / 3544
页数:5
相关论文
共 50 条
  • [21] A Pilot Study of a Human-Readable Robotic Process Automation Language
    Gago, Piotr
    Jablonski, Daniel
    Voitenkova, Anna
    Debelyi, Ihor
    Skorupska, Kinga
    Grzeszczuk, Maciej
    Kopec, Wieslaw
    DIGITAL INTERACTION AND MACHINE INTELLIGENCE, MIDI 2023, 2024, 1076 : 237 - 248
  • [22] Sensitivity labels and invisible identification markings in human-readable output
    Busch, C
    Wolthusen, SD
    SECURITY AND WATERMARKING OF MULTIMEDIA CONTENTS IV, 2002, 4675 : 149 - 157
  • [23] Reconstructing Hard Problems in a Human-Readable and Machine-Processable Way
    Schwitter, Rolf
    PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 1046 - 1052
  • [24] Generating Semantically Similar and Human-Readable Summaries With Generative Adversarial Networks
    Zhuang, Haojie
    Zhang, Weibin
    IEEE ACCESS, 2019, 7 : 169426 - 169433
  • [25] Human-Readable Fiducial Marker Classification using Convolutional Neural Networks
    Liu, Yanfeng
    Psota, Eric T.
    Perez, Lance C.
    2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2017, : 606 - 610
  • [26] Syntactic Spreadsheets: In Search for a Human-Readable Representation of Parse Tree Forests
    Bien, Janusz S.
    HUMAN LANGUAGE TECHNOLOGY: CHALLENGES OF THE INFORMATION SOCIETY, 2009, 5603 : 107 - 117
  • [27] A Declarative Data Protection Approach: From Human-Readable Policies to Automatic Enforcement
    Di Cerbo, Francesco
    Lunardelli, Alessio
    Matteucci, Ilaria
    Martinelli, Fabio
    Mori, Paolo
    WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST 2018), 2019, 372 : 78 - 98
  • [28] SBML2LATEX: Conversion of SBML files into human-readable reports
    Draeger, Andreas
    Planatscher, Hannes
    Wouamba, Dieudonne Motsou
    Schroeder, Adrian
    Hucka, Michael
    Endler, Lukas
    Golebiewski, Martin
    Mueller, Wolfgang
    Zell, Andreas
    BIOINFORMATICS, 2009, 25 (11) : 1455 - 1456
  • [29] Faceless: A Cross-Platform Private Payment scheme for Human-Readable Identifiers
    Lin, Huang
    2022 19TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY & TRUST (PST), 2022,
  • [30] Evaluation of human-readable annotation in biomolecular sequence databases with biological rule libraries
    Eisenhaber, F
    Bork, P
    BIOINFORMATICS, 1999, 15 (7-8) : 528 - 535