Renormalization of massive vector field theory coupled to scalar in curved spacetime

被引:0
|
作者
Buchbinder, Ioseph L. [1 ,2 ]
do Vale, Publio Rwany B. R. [3 ,4 ]
Oyadomari, Guilherme Y. [3 ,5 ]
Shapiro, Ilya L. [3 ,5 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Tomsk State Pedag Univ, Tomsk 637041, Russia
[3] Univ Fed Juiz de Fora, Dept Fis, ICE, BR-36036900 Juiz De Fora, MG, Brazil
[4] Univ Zaragoza, Ctr Astroparticulas & Fis Altas Energias, Dept Fis Teor, E-50009 Zaragoza, Spain
[5] Univ Fed Espirito Santo, PPGCosmo, BR-29075910 Vitoria, ES, Brazil
关键词
GAUGE-THEORIES;
D O I
10.1103/PhysRevD.110.125015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the renormalization of a massive vector field interacting with a charged scalar field in curved spacetime. Starting with the theory minimally coupled to external gravity and using the formulations with and without St & uuml;ckelberg fields, we show that the longitudinal mode of the vector field is completely decoupled and the remaining theory of the transverse vector field is renormalizable by power counting. The formal arguments based on the covariance and power counting indicate that multiplicative renormalizability of the interacting theory may require introducing two nonminimal terms linear in the Ricci tensor in the vector sector. Nevertheless, a more detailed analysis shows that these nonminimal terms violate the decoupling of the longitudinal mode and are prohibited. As a verification of general arguments, we derive the one-loop divergences in the minimal massive scalar QED, using the St & uuml;ckelberg procedure and the heat-kernel technique. The theory without nonminimal terms proves one-loop renormalizable and admits the renormalization group equations for all the running parameters in the scalar and vector sectors. One-loop beta functions do not depend on the gauge fixing and can be used to derive the effective potential.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] QUANTUM-FIELD THEORY IN CURVED SPACETIME
    KAY, BS
    DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 373 - 393
  • [42] Axiomatic Quantum Field Theory in Curved Spacetime
    Hollands, Stefan
    Wald, Robert M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (01) : 85 - 125
  • [43] Axiomatic Quantum Field Theory in Curved Spacetime
    Stefan Hollands
    Robert M. Wald
    Communications in Mathematical Physics, 2010, 293 : 85 - 125
  • [44] Superconformal quantum field theory in curved spacetime
    de Medeiros, Paul
    Hollands, Stefan
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)
  • [45] Scalar field theory on noncommutative Snyder spacetime
    Battisti, Marco Valerio
    Meljanac, Stjepan
    PHYSICAL REVIEW D, 2010, 82 (02):
  • [46] Influence of scalar field in massive particle motion in JNW spacetime
    Turimov, Bobur
    Davlataliev, Akbar
    Abdujabbarov, Ahmadjon
    Ahmedov, Bobomurat
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [47] Asymptotic properties of the massive scalar field in the external Schwarzschild spacetime
    Huh, Hyungjin
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (01) : 55 - 63
  • [48] FUNCTIONAL RENORMALIZATION OF NONCOMMUTATIVE SCALAR FIELD THEORY
    Sfondrini, Alessandro
    Koslowski, Tim A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (23): : 4009 - 4051
  • [49] Wilsonian renormalization of noncommutative scalar field theory
    Gurau, Razvan
    Rosten, Oliver J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07):
  • [50] Renormalization of a deformed scalar quantum field theory
    Bezerra, VB
    Curado, EMF
    Rego-Monteiro, MA
    PHYSICAL REVIEW D, 2004, 69 (08): : 7