Sensitivity Analysis and Validation of a Computational Framework for Supersonic Parachute Inflation Dynamics

被引:0
|
作者
As'ad, Faisal [1 ]
Avery, Philip [1 ]
Farhat, Charbel [2 ,3 ]
Rabinovitch, Jason [4 ]
Lobbia, Marcus [5 ]
Ataei, Navid [6 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Durand Bldg,Room 224, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Durand Bldg,Room 257, Stanford, CA 94305 USA
[3] Stanford Univ, Inst Computat & Math Engn, Durand Bldg,Room 257, Stanford, CA 94305 USA
[4] Stevens Inst Technol, Dept Mech Engn, Edwin A Stevens Hall,Room E209, Hoboken, NJ 07030 USA
[5] CALTECH, Jet Prop Lab, Descent Landing & Adv Technol Grp, 4800 Oak Grove Dr,M-S 301-490, Pasadena, CA 91109 USA
[6] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S M-S 321-130, Pasadena, CA 91109 USA
来源
AIAA AVIATION FORUM AND ASCEND 2024 | 2024年
关键词
FORMULATION;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The supersonic parachute inflation dynamics (PID) of the Advanced Supersonic Parachute Research (ASPIRE) SR03 parachute system, represented by a detailed computational model, are numerically simulated using a high-fidelity framework for fluid-structure interaction (FSI). Numerical results, in the form of representative quantities of interest, are validated against data from the ASPIRE SR03 flight test. The validation is performed on a predefined array of simulations in order to investigate the robustness of these results and establish their sensitivities to identified critical modeling assumptions, including: resolution of the computational fluid dynamics mesh; choice of the constitutive law for material modeling; and priority of the physics to be captured. These sensitivities are evaluated with attention to their development and computational costs, and to their associated uncertainties. The ultimate goal of the reported work is to pave the way for establishing best practices for the numerical simulation of supersonic PID; and to advance the potential role of computational FSI in the design and evaluation processes of inflatable systems in general.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Computational Fluid Dynamics Model for Sensitivity Analysis and Design of Flow Conditioners
    Askari, V
    Nicolas, D.
    Edralin, M.
    Jang, C.
    SIMULTECH: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS, 2019, 2019, : 129 - 140
  • [42] Parachute dynamics and perturbation analysis of precision airdrop system
    Gao Xinglong
    Zhang Qingbin
    Tang Qiangang
    Chinese Journal of Aeronautics , 2016, (03) : 596 - 607
  • [43] Perspective on computational fluid dynamics validation
    NASA Ames Research Cent, Moffett Field, United States
    AIAA J, 10 (1778-1787):
  • [44] Verification and validation in computational fluid dynamics
    Oberkampf, WL
    Trucano, TG
    PROGRESS IN AEROSPACE SCIENCES, 2002, 38 (03) : 209 - 272
  • [45] Parachute dynamics and perturbation analysis of precision airdrop system
    Gao Xinglong
    Zhang Qingbin
    Tang Qiangang
    Chinese Journal of Aeronautics, 2016, 29 (03) : 596 - 607
  • [46] Parachute dynamics and perturbation analysis of precision airdrop system
    Gao Xinglong
    Zhang Qingbin
    Tang Qiangang
    CHINESE JOURNAL OF AERONAUTICS, 2016, 29 (03) : 596 - 607
  • [47] Analysis of the Dynamics of Inflation in Serbia
    Durovic, Jadranka
    Dordevic, Marina
    Tomic, Zoran
    STRATEGIC MANAGEMENT, 2016, 21 (03): : 56 - 61
  • [48] Assessment of Computational Fluid Dynamics for Supersonic Shock Containing Jets
    Miller, Steven A. E.
    Veltin, Jeremy
    Morris, Philip J.
    McLaughlin, Dennis K.
    AIAA JOURNAL, 2009, 47 (11) : 2738 - 2746
  • [49] Development of a Computational Fluid Dynamics Model for Ice Formation: Validation and Parameter Analysis
    Ferro, Carlo Giovanni
    Maggiore, Paolo
    Champvillair, Daniele
    ATMOSPHERE, 2023, 14 (05)
  • [50] An Experimental Analysis of a Solar Greenhouse Drier: Computational Fluid Dynamics (CFD) Validation
    Lokeswaran, S.
    Eswaramoorthy, M.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (21) : 2062 - 2071