Leveraging Local and Global Features for Enhanced Segmentation of Brain Metastatic Tumors in Magnetic Resonance Imaging

被引:0
|
作者
Nejad, Mojtaba Mansouri [1 ,2 ,3 ]
Rostami, Habib [4 ,5 ]
Keshavarz, Ahmad [1 ,2 ]
Ghimatgar, Hojat [1 ,3 ]
Rayani, Mohamad Saleh [1 ,2 ,3 ]
Gonbadi, Leila [4 ,5 ]
机构
[1] Persian Gulf Univ, Fac Intelligent Syst Engn & Data Sci, Dept Elect Engn, Bushehr, Iran
[2] Persian Gulf Univ, ICT Res Inst, Fac Intelligent Syst Engn & Data Sci, IoT & Signal Proc Res Grp, Bushehr, Iran
[3] Persian Gulf Univ, ICT Res Inst, Fac Intelligent Syst Engn & Data Sci, Computat Neurosci Lab, Bushehr, Iran
[4] Persian Gulf Univ, Fac Intelligent Syst Engn & Data Sci, Dept Comp Engn, Bushehr, Iran
[5] Persian Gulf Univ, ICT Res Inst, Fac Intelligent Syst Engn & Data Sci, Artificial Intelligence & Intelligent Healthcare L, Bushehr, Iran
关键词
CNN; MRI; VIT;
D O I
10.1002/ima.70042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metastatic brain tumors present significant challenges in diagnosis and treatment, contributing to high mortality rates worldwide. Magnetic resonance imaging (MRI) is a pivotal diagnostic tool for identifying and assessing these tumors. However, accurate segmentation of MRI images remains critical for effective treatment planning and prognosis determination. Traditional segmentation methods, including threshold-based algorithms, often struggle with precisely delineating tumor boundaries, especially in three-dimensional (3D) images. This article introduces a 3D segmentation framework that combines Swin Transformers and 3D U-Net architectures, leveraging the complementary strengths of these models to improve segmentation accuracy and generalizability for metastatic brain tumors. We train multiple 3D U-Net and Swin U-Net models, selecting the best-performing architectures for segmenting tumor voxels. The outputs of these networks are then combined using various strategies, such as logical operations and stacking the outputs with the original images, to guide the training of a third model. Our method employs an innovative ensemble approach, integrating these outputs into a unified prediction model to enhance performance reliability. Experimental analysis on a newly released metastasis brain tumor dataset, which to the best of our knowledge has been tested for the first time using our models, yielded an impressive accuracy of 73.47%, validating the effectiveness of the proposed architectures.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Segmentation of magnetic resonance brain imaging based on graph theory
    Razavi S.E.
    Khodadadi H.
    Razavi, S. Ehsan (e_razavi_control@yahoo.com), 1600, Mashhad University of Medical Sciences (17): : 48 - 57
  • [32] Imaging of Brain Tumors: Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging
    Gupta, Ajay
    Shah, Akash
    Young, Robert J.
    Holodny, Andrei I.
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2010, 20 (03) : 379 - +
  • [33] Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine
    D. Balériaux
    C. Colosimo
    J. Ruscalleda
    M. Korves
    G. Schneider
    K. Bohndorf
    G. Bongartz
    M. van Buchem
    M. Reiser
    K. Sartor
    M. Bourne
    P. Parizel
    G. Cherryman
    I. Salerio
    La A. Noce
    G. Pirovano
    M. Kirchin
    A. Spinazzi
    Neuroradiology, 2002, 44 : 191 - 203
  • [34] Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine
    Balériaux, D
    Colosimo, C
    Ruscalleda, J
    Korves, M
    Schneider, G
    Bohndorf, K
    Bongartz, G
    van Buchem, MA
    Reiser, M
    Sartor, K
    Bourne, MW
    Parizel, PM
    Cherryman, GR
    Salerio, I
    La Noce, A
    Pirovano, G
    Kirchin, MA
    Spinazzi, A
    NEURORADIOLOGY, 2002, 44 (03) : 191 - 203
  • [35] Inflammatory lesions and brain tumors: is it possible to differentiate them based on texture features in magnetic resonance imaging?
    Fattori Alves, Allan Felipe
    de Arruda Miranda, Jose Ricardo
    Reis, Fabiano
    Santana de Souza, Sergio Augusto
    Rodrigues Alves, Luciana Luchesi
    Feitoza, Laisson de Moura
    de Souza de Castro, Jose Thiago
    de Pina, Diana Rodrigues
    JOURNAL OF VENOMOUS ANIMALS AND TOXINS INCLUDING TROPICAL DISEASES, 2020, 26
  • [36] Presurgical functional magnetic resonance imaging in patients with brain tumors
    Ravn, Soren
    Holmberg, Mats
    Sorensen, Preben
    Frokjaer, Jens B.
    Carl, Jesper
    ACTA RADIOLOGICA, 2016, 57 (01) : 82 - 89
  • [37] Multimodal Magnetic Resonance Imaging Evaluation of Primary Brain Tumors
    Treister, Daniel
    Kingston, Sara
    Hoque, Kristina E.
    Law, Meng
    Shiroishi, Mark S.
    SEMINARS IN ONCOLOGY, 2014, 41 (04) : 478 - 495
  • [38] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Ferda, Jiri
    Kastner, Jan
    Mukensnabl, Petr
    Choc, Milan
    Horemuzova, Jana
    Ferdova, Eva
    Kreuzberg, Boris
    EUROPEAN JOURNAL OF RADIOLOGY, 2010, 74 (03) : 428 - 436
  • [39] MAGNETIC-RESONANCE-IMAGING OF PEDIATRIC BRAIN-TUMORS
    FITZ, C
    TOPICS IN MAGNETIC RESONANCE IMAGING, 1993, 5 (03) : 174 - 189
  • [40] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
    不详
    不详
    Eur. J. Radiol., 3 (428-436):