Hierarchical sheet triply periodic minimal surface lattices: Design, performance and optimization

被引:1
|
作者
Xu, Hong [1 ,2 ]
Zhang, Yu [1 ,2 ]
Mei, Yuheng [1 ,2 ]
Wu, Zhiyuan [1 ,2 ]
Zhang, Yuan [1 ,2 ]
Ma, Mengxin [1 ,2 ,3 ]
Liu, Xiaohu [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Key Lab Engn Struct Anal & Safety Assessment, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[3] Xian Inst Electromecflan Informat Technol, Xian 710000, Shanxi, Peoples R China
关键词
Triply periodic minimal surface; Hierarchical lattices; Thermal-hydraulic performance; Deep reinforcement learning; HEAT-TRANSFER ENHANCEMENT; SINK;
D O I
10.1016/j.applthermaleng.2024.125187
中图分类号
O414.1 [热力学];
学科分类号
摘要
Increasing power consumption of critical components requires the development of more compact and efficient heat sinks. Triply periodic minimal surfaces have emerged as promising solutions for advanced thermal management. However, traditional approaches to enhancing the thermal-hydraulic performance of these heat sinks often relay on reducing cell size and increasing porosity. While effective, these approaches compromise cell wall thickness, leading to diminished mechanical properties and challenges in additive manufacturing. Inspired by natural materials, this study introduces a bionic hierarchical design for triply periodic minimal surface structures to address these limitations. The thermo-hydraulic characteristics of a novel class of heat sinks based on hierarchical structures were analyzed and compared with those of single-scale lattices. Hierarchical structures demonstrated more complex fluid flow patterns, including a greater number of high-velocity vortices, which promote enhanced mixing and heat transfer. Comparative analysis revealed that, while single-scale structures with smaller cell sizes achieved superior heat transfer performance at equivalent porosity, hierarchical structures offered significant advantages by reducing friction factors. Moreover, hierarchical structures achieved overall thermal-hydraulic performance comparable to that of single-scale structures while enabling thicker cell walls, which improve mechanical strength and reduce manufacturing precision demands. Hierarchical designs with larger overall porosities and cell size ratios exhibited particularly superior overall thermal-hydraulic performance. Additionally, deep reinforcement learning was employed to optimise the the hierarchical lattice design. The friction factor and j-factor were used to evaluate hydrodynamic and heat performances, respectively. Optimisation results indicated that the hierarchical Primitive structure reduced the friction factor by 14.7%, improved the j-factor by 46.3%, and increased the wall thickness by 165.4%. Similarly, the hierarchical I-WP structure achieved a 40.3% reduction in friction factor, a 17.0% improvement in j-factor, and a 119.3% increase in wall thickness. These findings highlight the potential of hierarchical TPMS designs to optimise thermal and mechanical performance while enhancing manufacturability.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Mechanical Strength of Triply Periodic Minimal Surface Lattices Subjected to Three-Point Bending
    Lin, Zo-Han
    Pan, Jyun-Hong
    Li, Hung-Yuan
    POLYMERS, 2022, 14 (14)
  • [32] Mechanical behavior of interpenetrating phase composite structures based on triply periodic minimal surface lattices
    Wang, Kedi
    Wang, Han
    Zhang, Jiaqi
    Fan, Xueling
    COMPOSITE STRUCTURES, 2024, 337
  • [33] Reactor physics characterization of triply periodic minimal surface-based nuclear fuel lattices
    Martin, Nicolas
    Seo, Seokbin
    Prieto, Silvino Balderrama
    Jesse, Casey
    Woolstenhulme, Nicolas
    PROGRESS IN NUCLEAR ENERGY, 2023, 165
  • [34] The Morse index of a triply periodic minimal surface
    Ejiri, Norio
    Shoda, Toshihiro
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 177 - 201
  • [35] Triply periodic minimal surface structures: Energy absorption performance under impact loading and their graded design
    Cheng, Qian
    Yin, Jianfei
    Wen, Jihong
    Yu, Dianlong
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (29) : 11725 - 11736
  • [36] Multi-parameter design of triply periodic minimal surface scaffolds: from geometry optimization to biomechanical simulation
    Yang, Xiaoshuai
    Sun, Zhongwei
    Hu, Yuanbin
    Mi, Changwen
    BIOMEDICAL MATERIALS, 2024, 19 (05)
  • [37] Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading
    Wang, Zhonggang
    Wang, Xinxin
    Gao, Tianyu
    Shi, Chong
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (19) : 2057 - 2069
  • [38] Triply periodic minimal surface based geometry design of bio-scaffolds
    Tripathi, Yogesh
    Shukla, Mukul
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL, INDUSTRIAL, AUTOMATION AND MANAGEMENT SYSTEMS (AMIAMS) - PROCEEDINGS, 2017, : 348 - 350
  • [39] Design and analyze of flexure hinges based on triply periodic minimal surface lattice
    Pan, A. Jiansheng
    Wu, B. Jianwei
    Zhang, C. Yin
    Wang, D. Hui
    Tan, E. Jiubin
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2021, 68 : 338 - 350
  • [40] Micromixing performance of a static mixer with an internal triply periodic minimal surface structure
    Yang, Xinjun
    Lin, Xiaohan
    Wang, Dongxiang
    Yuan, Fangyang
    Yu, Wei
    Du, Jiyun
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2025, 212