LE-YOLOv5: A Lightweight and Efficient Neural Network for Steel Surface Defect Detection

被引:0
|
作者
Zhu, Chengshun [1 ]
Sun, Yong [1 ]
Zhang, Hongji [1 ]
Yuan, Shilong [1 ]
Zhang, Hui [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mech Engn, Zhenjiang 212100, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Convolution; Computational modeling; Feature extraction; Steel; Defect detection; Surface treatment; Detectors; Accuracy; Transformers; Neural networks; Deep learning; YOLOv5; surface defect detection; attention mechanism;
D O I
10.1109/ACCESS.2024.3519161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the influence of manufacturing process and external factors, there will be some undesired defects on the steel surface, which seriously affects the lifetime of steel, and the traditional surface defect detection efficiency and speed are not satisfactory. Therefore, based on the industrial scenario of low computational force, this study proposed a lightweight and efficient defect detector called LE-YOLOv5. First, we utilize ShuffleNetv2 as the backbone of the model, which greatly reduces the number of parameters. Second, we propose a CBMM module to expand the global receptive field of the model in the initial down sampling stage, which facilitates the model in capturing global information. Third, we also propose a parallelized C2N module for the detection of small defects. Finally, we design a global coordination attention (GCA) to efficiently connect position and spatial information from the feature map. Numerous experimental results demonstrate that LE-YOLOv5 has a highly superior overall performance, reaching 79.1% mean Average Precision (mAP) on the NEU-DET dataset while inferring an image on the CPU in 196.1 ms, which is 5% and 1.5% improved mAP compared to YOLOv5M and YOLOv5L, respectively. At the same time, under the condition that the inference time for an image on a CPU-dependent low computing power force remains the same, the accuracy has improved by 5.3% compared to YOLOv8. It provides excellent potential for defect detection of steel in industrial environment.
引用
收藏
页码:195242 / 195255
页数:14
相关论文
共 50 条
  • [1] LE-YOLOv5: A Lightweight and Efficient Road Damage Detection Algorithm Based on Improved YOLOv5
    Diao, Zhuo
    Huang, Xianfu
    Liu, Han
    Liu, Zhanwei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [2] Strip steel surface defect detection based on lightweight YOLOv5
    Zhang, Yongping
    Shen, Sijie
    Xu, Sen
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [3] A lightweight convolutional neural network for surface defect detection in strip steel
    Yang, Chunlong
    Lv, Donghao
    Tian, Xu
    Wang, Chengzhi
    Yang, Peihong
    Zhang, Yong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [4] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [5] An efficient lightweight convolutional neural network for industrial surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Wang, Dechen
    Qin, Chunbin
    Zhao, Bo
    Liang, Linlin
    Liu, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10651 - 10677
  • [6] An efficient lightweight convolutional neural network for industrial surface defect detection
    Dehua Zhang
    Xinyuan Hao
    Dechen Wang
    Chunbin Qin
    Bo Zhao
    Linlin Liang
    Wei Liu
    Artificial Intelligence Review, 2023, 56 : 10651 - 10677
  • [7] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [8] Multi-Scale Lightweight Neural Network for Steel Surface Defect Detection
    Shao, Yichuan
    Fan, Shuo
    Sun, Haijing
    Tan, Zhenyu
    Cai, Ying
    Zhang, Can
    Zhang, Le
    COATINGS, 2023, 13 (07)
  • [9] Steel surface defect detection based on lightweight YOLOv7
    Shi, Tao
    Wu, Rongxin
    Zhu, Wenxu
    Ma, Qingliang
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 306 - 313
  • [10] Steel surface defect detection based on lightweight YOLOv7
    SHI Tao
    WU Rongxin
    ZHU Wenxu
    MA Qingliang
    Optoelectronics Letters, 2025, 21 (05) : 306 - 313