Parametric estimation and robust inference for current status data with Lindley lifetimes

被引:0
|
作者
Castilla, Elena [1 ]
机构
[1] Rey Juan Carlos Univ, Dept Matemat Aplicada, Mostoles Campus, Madrid 28933, Spain
关键词
Current status data; Confidence intervals; EM-algorithm; Lindley distribution; Model misspecification; Robustness; WEIBULL; MODEL;
D O I
10.1080/03610918.2025.2455415
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Current status data appear in many biomedical studies when we only know if an event of interest occurs before or after a specific time point. In this paper, we develop statistical inference for the estimation of parameters from current status data under the Lindley lifetime distribution, which is seen to work better than the exponential distribution in some lifetime contexts. We first develop an EM algorithm for Maximum Likelihood (ML) estimation and derive the asymptotic confidence intervals for model parameters. Then, we address the problem of model misspecification and define a new family of robust divergence-based estimators as a robust alternative to ML. Finally, we illustrate these methods through a simulation study as well as a numerical example.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Robust Estimation and Inference on Current Status Data with Applications to Phase IV Cancer Trial
    Srivastava, Deo Kumar
    Zhu, Liang
    Hudson, Melissa M.
    Pan, Jianmin
    Rai, Shesh N.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2018, 17 (01) : 1 - 20
  • [2] Statistical inference based on Lindley record data
    A. Asgharzadeh
    A. Fallah
    M. Z. Raqab
    R. Valiollahi
    Statistical Papers, 2018, 59 : 759 - 779
  • [3] Statistical inference based on Lindley record data
    Asgharzadeh, A.
    Fallah, A.
    Raqab, M. Z.
    Valiollahi, R.
    STATISTICAL PAPERS, 2018, 59 (02) : 759 - 779
  • [4] Robust and Efficient Parametric Estimation for Censored Survival Data
    Srabashi Basu
    Ayanendranath Basu
    M. C. Jones
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 341 - 355
  • [5] Robust and efficient parametric estimation for censored survival data
    Basu, Srabashi
    Basu, Ayanendranath
    Jones, M. C.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (02) : 341 - 355
  • [6] Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks
    Tamalika Koley
    Anup Dewanji
    Sankhya B, 2019, 81 (1) : 39 - 59
  • [7] Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks
    Koley, Tamalika
    Dewanji, Anup
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (01): : 39 - 59
  • [8] Adaptive Bayesian inference for current status data on a grid
    Chae, Minwoo
    BERNOULLI, 2023, 29 (01) : 403 - 427
  • [9] Doubly robust estimation and causal inference for recurrent event data
    Su, Chien-Lin
    Steele, Russell
    Shrier, Ian
    STATISTICS IN MEDICINE, 2020, 39 (17) : 2324 - 2338
  • [10] Doubly robust estimation in missing data and causal inference models
    Bang, H
    BIOMETRICS, 2005, 61 (04) : 962 - 972