Melting temperature, emissivity, and thermal conductivity of rare-earth silicates for thermal and environmental barrier coatings

被引:0
|
作者
Schonfeld, Hunter B. [1 ]
Milich, Milena [1 ]
Miller, Cameron [2 ]
Doumaux, Laura [2 ]
Ridley, Mackenzie [3 ]
Pfeifer, Thomas [1 ]
Riffe, William [1 ]
Robba, Davide [3 ]
Vlahovic, Luka [3 ,4 ]
Boboridis, Konstantinos [3 ,4 ]
Konings, Rudy J. M. [3 ,4 ,7 ]
Chamberlain, Adam [5 ]
Opila, Elizabeth [2 ]
Hopkins, Patrick E. [1 ,2 ,6 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, 122 Engineers Way, Charlottesville, VA 22904 USA
[2] Univ Virginia, Dept Mat Sci & Engn, 395 Mormick Rd, Charlottesville, VA 22904 USA
[3] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[4] European Commiss, Joint Res Ctr, Hermann von Helmholtz Str 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] Rolls Royce Corp, 450 S Meridian St, Indianapolis, IN 46225 USA
[6] Univ Virginia, Dept Phys, 382 Mormick Rd, Charlottesville, VA 22904 USA
[7] Delft Univ Technol, Fac Appl Sci, Dept Radiat Sci & Technol, NL-2628 Delft, Netherlands
关键词
Environmental barrier coatings; Thermal barrier coatings; Thermal conductivity; Solidification; Phase transition; RE2SIO5; RE; OXIDES; POINT; ND;
D O I
10.1016/j.scriptamat.2025.116576
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, rare-earth silicates have become the industry standard for coating state-of-the-art SiC ceramic matrix composite (CMC) gas turbine engine components, due to their low volatility, high melting point, and thermal shock resistance. Current research is focused on designing rare-earth silicate based thermal- environmental barrier coatings (T/EBCs) with improved resistance to CMAS (CaO-MgO-Al2O3-SiO2), steam, and crack formation, while maintaining high temperature performance and stability. In this work we compare the high temperature performance of a variety of single and multi-component rare-earth mono- and disilicates (MS, DS) and rare earth apatites by measuring their melting points and spectrally averaged visible emissivities using laser heating and radiation pyrometry. We also report room temperature thermal conductivity measured by time- domain thermoreflectance (TDTR).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thermal Conductivity and Lorenz Number of the Heavy Rare-Earth Metals
    Ratnalingam, R.
    Sousa, J. B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1971, 4 (04) : 401 - 414
  • [32] THERMAL CONDUCTIVITY PREDICTION FOR THERMAL BARRIER COATINGS
    Silva, Monica B.
    Guo, S. M.
    Mensah, Patrick F.
    Diwan, Ravinder
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 1475 - 1484
  • [33] THERMAL-CONDUCTIVITY AND ETTINGSHAUSEN COEFFICIENT IN RARE-EARTH METALS
    ZECCHINA, L
    PHYSICS LETTERS A, 1974, A 50 (02) : 95 - 96
  • [34] The effect of rare-earth filling on the lattice thermal conductivity of skutterudites
    Nolas, GS
    Slack, GA
    Morelli, DT
    Tritt, TM
    Ehrlich, AC
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) : 4002 - 4008
  • [35] THERMAL CONDUCTIVITY OF GARNETS AND PHONON SCATTERING BY RARE-EARTH IONS
    SLACK, GA
    OLIVER, DW
    PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (02): : 592 - &
  • [36] Thermal Conductivity of Rare-Earth Scandium Garnets and Their Solid Solutions
    Popov, P. A.
    Sirota, N. N.
    Zharikov, E. V.
    Zagumennyi, A. I.
    Ivanov, I. A.
    Lutts, G. B.
    LASER PHYSICS, 1991, 1 (04) : 437 - 440
  • [37] Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings
    Luo, Xuewei
    Huang, Ruiqi
    Xu, Chunhui
    Huang, Shuo
    Hou, Shuen
    Jin, Hongyun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 926
  • [38] Effect of Sintering on Thermal Conductivity and Thermal Barrier Effects of Thermal Barrier Coatings
    Wang Kai
    Peng Hui
    Guo Hongbo
    Gong Shengkai
    CHINESE JOURNAL OF AERONAUTICS, 2012, 25 (05) : 811 - 816
  • [40] Effect of Sintering on Thermal Conductivity and Thermal Barrier Effects of Thermal Barrier Coatings
    WANG Kai PENG Hui GUO Hongbo GONG Shengkai School of Materials Science and Engineering Beihang University Beijing China
    Chinese Journal of Aeronautics, 2012, 25 (05) : 811 - 816