Enhanced hydrogen production in zero-gap bipolar membrane microbial electrolysis with binderless cathodes in real wastewater

被引:0
|
作者
Jwa, Eunjin [1 ]
Kim, Sanghyeon [1 ,2 ]
Jeong, Namjo [1 ]
Han, Seungyeob [3 ]
Song, Min Joon [4 ]
Kang, Seoktae [4 ]
Nam, Joo-Youn [1 ,5 ]
机构
[1] Korea Inst Energy Res, Convergence Res Ctr Sect Coupling & Integrat, 200 Haemajihaean Ro, Jeju 63359, South Korea
[2] Texas A&M Univ, Dept Civil & Environm Engn, College Stn, TX 77843 USA
[3] Arizona State Univ, Biodesign Swette Ctr Environm Biotechnol, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA
[4] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 34141, South Korea
[5] Hankyong Natl Univ, Sch Civil & Environm Engn, 327 Jungang ro, Anseong 17579, South Korea
基金
新加坡国家研究基金会;
关键词
Bioelectrochemical systems; Hydrogen evolution; Sustainable energy; Electrode materials; Livestock wastewater; ELECTRODEPOSITED NI; CELLS; EVOLUTION; CATALYSTS; TECHNOLOGY; TRANSPORT; COATINGS; ALLOY; MECS;
D O I
10.1016/j.cej.2025.161416
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Producing pure hydrogen through microbial electro-fermentation is crucial for realizing a carbon-neutral society. To advance the commercialization of bipolar membrane microbial electrolysis cells (BPM-MECs), assessing their hydrogen production performance under actual wastewater conditions is essential. This study investigates a novel zero-gap BPM-MEC for biohydrogen production using various wastewater sources, including artificial wastewater, brewery wastewater (BW), food wastewater, and livestock wastewater (LW). Importantly, the use of real wastewater, particularly LW, demonstrated superior performance, with high current density and enhanced hydrogen production, driven by the efficient breakdown of volatile fatty acids. BW, rich in alcohols, also exhibited strong initial performance. Among the binderless cathodes tested, the NiCo/CC cathode significantly outperformed NiMo/CC and NiFe/CC, achieving a remarkable current density of 7.6 +/- 0.5 A/m(2) and a hydrogen production rate of 21 +/- 1 m(3) H-2/m(3)<middle dot>d. Notably, the binderless NiCo/CC cathode maintained a catalytic efficiency of 90 +/- 5 % even in real wastewater conditions, while exhibiting exceptional energy efficiency (>132 +/- 9.5 %) during the hydrogen evolution reaction under acidified NaCl conditions. The enhanced performance is attributed to its porous, uniform film-like layer of Ni with abundant grain boundaries and Co concentrated around them, providing additional active sites for hydrogen production.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Flow field design for zero-gap microbial electrolysis cells using synthetic and real wastewater
    Kim, Danbee
    Yun, Nakyeong
    Du, Hongang
    Jimenez, Daniel A. Moreno
    Rossi, Ruggero
    JOURNAL OF POWER SOURCES, 2025, 630
  • [2] A zero-gap silicon membrane with defined pore size and porosity for alkaline electrolysis
    Raman, Akash
    Van der Werf, Sjoerd
    Eyoevge, Cavit
    Rodriguez Olguin, Miguel Angel
    Schlautmann, Stefan
    Fernandez Rivas, David
    Mei, Bastian
    Gardeniers, Han
    Susarrey-Arce, Arturo
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (15): : 3296 - 3303
  • [3] Microenvironment Regulation Strategies Facilitating High-Efficiency CO2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer
    Yue, Pengtao
    Fu, Qian
    Li, Jun
    Zhang, Liang
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53429 - 53435
  • [4] Zero-gap bipolar membrane water electrolyzers: Principles, challenges and practical insights
    Faqeeh, Abdulhai H.
    Symes, Mark D.
    ELECTROCHIMICA ACTA, 2024, 493
  • [5] Modeling Planar Electrodes and Zero-Gap Membrane Electrode Assemblies for CO2 Electrolysis
    Ehlinger, Victoria M.
    Lee, Dong Un
    Lin, Tiras Y.
    Duoss, Eric B.
    Baker, Sarah E.
    Jaramillo, Thomas F.
    Hahn, Christopher
    CHEMELECTROCHEM, 2024, 11 (07)
  • [6] Enhanced hydrogen production by mevastatin in microbial electrolysis cells
    Catal, Tunc
    Pasaoglu, Eke
    Akagunduz, Dilan
    Cebecioglu, Rumeysa
    Akul, Naki Burak
    Ozdemir, Murat
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13990 - 13998
  • [7] Hydrogen production from wastewater using a microbial electrolysis cell
    Jia, Yu Hong
    Choi, Ji Youn
    Ryu, Jae Hun
    Kim, Cho Hui
    Lee, Woo Kyung
    Hung Thuan Tran
    Zhang, Rui Hong
    Ahn, Dae Hee
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (06) : 1854 - 1859
  • [8] Hydrogen Production and Wastewater Treatment in a Microbial Electrolysis Cell with a Biocathode
    Xu, Yuan
    Jiang, Yangyue
    Chen, Yingwen
    Zhu, Shemin
    Shen, Shubao
    WATER ENVIRONMENT RESEARCH, 2014, 86 (07) : 649 - 653
  • [9] Hydrogen production from wastewater using a microbial electrolysis cell
    Yu Hong Jia
    Ji Youn Choi
    Jae Hun Ryu
    Cho Hui Kim
    Woo Kyung Lee
    Hung Thuan Tran
    Rui Hong Zhang
    Dae Hee Ahn
    Korean Journal of Chemical Engineering, 2010, 27 : 1854 - 1859
  • [10] Design of a Zero-Gap Laboratory-Scale Polymer Electrolyte Membrane Alkaline Water Electrolysis Stack
    Hnat, Jaromir
    Kodym, Roman
    Denk, Karel
    Paidar, Martin
    Zitka, Jan
    Bouzek, Karel
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (06) : 821 - 832