Flow field design for zero-gap microbial electrolysis cells using synthetic and real wastewater

被引:0
|
作者
Kim, Danbee [1 ]
Yun, Nakyeong [1 ]
Du, Hongang [1 ]
Jimenez, Daniel A. Moreno [1 ]
Rossi, Ruggero [1 ]
机构
[1] Johns Hopkins Univ, Whiting Sch Engn, Dept Environm Hlth & Engn, Baltimore, MD 21218 USA
关键词
Microbial electrolysis cell; Zero-gap; Flow path; Hydrogen production rate; Internal resistance; Wastewater; HYDROGEN-PRODUCTION; FERMENTATION; PERFORMANCE; GENERATION; TRANSPORT; LIMITS;
D O I
10.1016/j.jpowsour.2024.236077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Increasing performance in microbial electrolysis cells (MECs) requires the development of optimized reactor configurations with minimal internal resistance and capable to operate with real wastewater. Here, the impact of two different flow fields (serpentine and circular) was examined in zero-gap MECs with synthetic and real wastewaters. The serpentine flow field enabled a uniform distribution of the electrolyte in the anode chamber, resulting in larger current densities at lower flow rates compared to the circular flow field. Electrochemical tests using synthetic media with high buffer capacity revealed more stable and higher performance with the serpentine flow field compared to the circular flow path, producing larger current density (23.7 +/- 0.8 A/m(2) vs 21.9 +/- 5.6 A/m(2)), hydrogen production rate (75.8 +/- 4.1 L/L-d vs 54.3 +/- 2.4 L/L-d), cathodic coulombic efficiency (>91 % vs >50 %), and an overall lower internal resistance (12.5 +/- 0.5 m Omega m(2) vs 14.8 +/- 3.7 m Omega m(2)). Continuous operation for over 30 days with real wastewater indicated higher tolerance of the MECs with serpentine flow field toward media with large concentration of suspended solids, producing a current density of 5.4 +/- 1.1 A/m(2) and a hydrogen production rate of 22.2 +/- 6.2 L/L-d. The results presented here underscore the importance of reactor design and architecture in optimizing MEC performance for hydrogen production from liquid wastes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhanced hydrogen production in zero-gap bipolar membrane microbial electrolysis with binderless cathodes in real wastewater
    Jwa, Eunjin
    Kim, Sanghyeon
    Jeong, Namjo
    Han, Seungyeob
    Song, Min Joon
    Kang, Seoktae
    Nam, Joo-Youn
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [2] High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design
    Baek, Gahyun
    Rossi, Ruggero
    Saikaly, Pascal E.
    Logan, Bruce E.
    WATER RESEARCH, 2022, 219
  • [3] COMPARISON BETWEEN ZERO-GAP AND ATTACHED POROUS-ELECTRODE LAYER ELECTROLYSIS CELLS FOR CHLORALKALI ELECTROLYSIS
    MENSCHIG, KR
    SIMMROCK, KH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C487 - C487
  • [4] BRINE ELECTROLYSIS USING A PERFLUORINATED CATION-EXCHANGE MEMBRANE .3. PERFORMANCES OF ANODES FOR ZERO-GAP ELECTROLYSIS CELLS
    MORIMOTO, T
    MATSUBARA, T
    OHASHI, S
    DENKI KAGAKU, 1992, 60 (07): : 649 - 656
  • [5] Flow Field Design Matters for High Current Density Zero-Gap CO2 Electrolyzers
    Yuan, Shu
    Wang, Rongyi
    Xue, Rui
    Wu, Lizhen
    Zhang, Guiru
    Li, Huiyuan
    Wang, Qing
    Yin, Jiewei
    Luo, Liuxuan
    Shen, Shuiyun
    An, Liang
    Yan, Xiaohui
    Zhang, Junliang
    ACS ENERGY LETTERS, 2024, 9 (12): : 5945 - 5954
  • [6] Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells
    Lee, Jaeseung
    Alam, Afroz
    Park, Chungi
    Yoon, Soobin
    Ju, Hyunchul
    FUEL, 2022, 315
  • [7] Boosting the Performance of a Zero-gap Flow Microbial Fuel Cell by Immobilized Redox Mediators
    Chikin, Dmitry
    Petrov, Mikhail
    Loktionov, Pavel
    Pichugov, Roman
    Antipov, Anatoly
    CHEMPLUSCHEM, 2025,
  • [8] Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells
    Lee, Jaeseung
    Alam, Afroz
    Park, Chungi
    Yoon, Soobin
    Ju, Hyunchul
    Fuel, 2022, 315
  • [9] Design of a Zero-Gap Laboratory-Scale Polymer Electrolyte Membrane Alkaline Water Electrolysis Stack
    Hnat, Jaromir
    Kodym, Roman
    Denk, Karel
    Paidar, Martin
    Zitka, Jan
    Bouzek, Karel
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (06) : 821 - 832
  • [10] Zero-Gap AlkalineWater Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations
    Kraglund, Mikkel Rykaer
    Aili, David
    Jankova, Katja
    Christensen, Erik
    Li, Qingfeng
    Jensen, Jens Oluf
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3125 - F3131