NRK at SemEval-2024 Task 1: Semantic Textual Relatedness through Domain Adaptation and Ensemble Learning on BERT-based models

被引:0
|
作者
Nguyen Tuan Kiet [1 ,2 ]
Dang Van Thin [1 ,2 ]
机构
[1] Univ Informat Technol, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the system of the team NRK for Task A in the SemEval-2024 Task 1: Semantic Textual Relatedness (STR). We focus on exploring the performance of ensemble architectures based on the voting technique and different pre-trained transformer-based language models, including the multilingual and monolingual BERTology models. The experimental results show that our system has achieved competitive performance in some languages in Track A: Supervised, where our submissions rank in the Top 3 and Top 4 for Algerian Arabic and Amharic languages. Our source code is released on the GitHub site(1).
引用
收藏
页码:76 / 81
页数:6
相关论文
共 37 条
  • [31] GIL-IIMAS UNAM at SemEval-2024 Task 1: SAND: An In Depth Analysis of Semantic Relatedness Using Regression and Similarity Characteristics
    Lopez-Ponce, F.
    Cadena, Angel
    Salas-Jimenez, K.
    Preciado Marquez, D.
    Bel-Enguix, G.
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1288 - 1292
  • [32] Pinealai at SemEval-2024 Task 1: Exploring Semantic Relatedness Prediction using Syntactic, TF-IDF, and Distance-Based Features.
    Eponon, Anvi Alex
    Ramos, Luis
    Batyrshin, Ildar
    Sidorov, Grigori
    Kolesnikova, Olga
    Calvo, Hiram
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 935 - 939
  • [33] Sharif-STR at SemEval-2024 Task 1: Transformer as a Regression Model for Fine-Grained Scoring of Textual Semantic Relations
    Ebrahimi, Seyedeh Fatemeh
    Azari, Karim Akhavan
    Iravani, Amirmasoud
    Alizadeh, Hadi
    Taghavi, Zeinab Sadat
    Sameti, Hossein
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1043 - 1052
  • [34] CLTeam1 at SemEval-2024 Task 10: Large Language Model based ensemble for Emotion Detection in Hinglish
    Vaidya, Ankit
    Gokhale, Aditya
    Desai, Arnav
    Shukla, Ishaan
    Sonawane, Sheetal
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 365 - 369
  • [35] Team Unibuc - NLP at SemEval-2024 Task 8: Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
    Marchitan, Teodor-George
    Creanga, Claudiu
    Dinu, Liviu P.
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 403 - 411
  • [36] Groningen Team F at SemEval-2024 Task 8: Detecting Machine-Generated Text using Feature-Based Machine Learning Models
    Donker, Rina
    Overbeek, Bjorn
    van Thulden, Dennis
    Zwagers, Oscar
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1919 - 1925
  • [37] TECHSSN1 at SemEval-2024 Task 10: Emotion Classification in Hindi-English Code-Mixed Dialogue using Transformer-based Models
    Yenumulapalli, Venkatasai Ojus
    Premnath, Pooja
    Mohankumar, Parthiban
    Sivanaiah, Rajalakshmi
    Suseelan, Angel Deborah
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 833 - 838