Underwater Image Enhancement Using Encoder-Decoder Scale Attention Network

被引:0
|
作者
Lee, Ka-Ki [1 ]
Hsieh, Jun-Wei [1 ]
Hsieh, Yi-Kuan [1 ]
Hsieh, An-Ting [2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Computat Intelligence, Tainan, Taiwan
[2] Natl Tsing Hua Univ, Inst Informat Syst & Applicat, Hsinchu, Taiwan
关键词
Deep learning; Underwater image enhancement; EDSA-Net; Underwater image deblurring;
D O I
10.1109/ICCCI62159.2024.10674352
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Capturing underwater images often results in color distortions and blurriness due to the influence of water, leading to color shifts and haze caused by light propagation. To tackle these issues, we introduce the Encoder-Decoder Scale Attention Network (EDSA-Net) in this paper. The EDSA-Net integrates a Scale-Attention Module (SAM) to facilitate channel weight calculation across scales, thus extracting more informative features from the backbone. Additionally, we introduce a novel Cross-Scale Attention Module (CSAM) to address scale inconsistency and selectively weigh feature maps across scales, capturing various features crucial for underwater image restoration. By enabling interactions among different scales, the network extracts essential features from the images and progressively decodes them to restore clear and sharp underwater images. Experimental results demonstrate that our method achieves state-of-the-art (SoTA) performance and surpasses existing approaches in the field of underwater image restoration.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [11] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK
    Ma, Jingjing
    Wu, Linlin
    Tang, Xu
    Zhang, Xiangrong
    Zhu, Cheng
    Ma, Junyong
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1283 - 1286
  • [12] Image Denoising Using a Deep Encoder-Decoder Network with Skip Connections
    Couturier, Raphael
    Perrot, Gilles
    Salomon, Michel
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VI, 2018, 11306 : 554 - 565
  • [13] An Improved Encoder-Decoder Network for Ore Image Segmentation
    Yang, Hao
    Huang, Chao
    Wang, Long
    Luo, Xiong
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11469 - 11475
  • [14] Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection
    Hongbo Bi
    Huihui Zhu
    Lina Yang
    Ranwan Wu
    Pattern Recognition and Image Analysis, 2022, 32 : 340 - 350
  • [15] Deep Hierarchical Encoder-Decoder Network for Image Captioning
    Xiao, Xinyu
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2942 - 2956
  • [16] Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection
    Bi, Hongbo
    Zhu, Huihui
    Yang, Lina
    Wu, Ranwan
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (02) : 340 - 350
  • [17] An encoder-decoder network for crowd counting based on multi-scale attention mechanism
    Chuang H.-H.
    Chen Y.-C.
    Lin C.H.
    Multimedia Tools and Applications, 2025, 84 (03) : 1187 - 1210
  • [18] Encoder-Decoder Attention Network for Lesion Segmentation of Diabetic Retinopathy
    Feng, Shuanglang
    Zhu, Weifang
    Zhao, Heming
    Shi, Fei
    Li, Zuoyong
    Chen, Xinjian
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2019, 11855 : 139 - 147
  • [19] Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network
    Peracha, Fahad Khalil
    Khattak, Muhammad Irfan M.
    Salem, Nema M.
    Saleem, Nasir M.
    PLOS ONE, 2023, 18 (05):
  • [20] Attention Aggregation Encoder-Decoder Network Framework for Stereo Matching
    Zhang, Yaru
    Li, Yaqian
    Kong, Yating
    Liu, Bin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 760 - 764