Unsupervised Bayesian Surprise Detection in Spatial Audio with Convolutional Variational Autoencoder and LSTM Model

被引:0
|
作者
Khah, Arman Nik [1 ]
Htun, Chitsein [1 ]
Prakash, Ravi [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
关键词
360 degrees video; spatial audio; visual attention; Bayesian surprise; unsupervised learning; VAE-LSTM; AMBISONICS;
D O I
10.1145/3672406.3672422
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Understanding user visual attention (VA) is crucial for Field-of-View (FoV) prediction and resultant bandwidth optimization for 360 degrees video streaming. The influence of spatial audio on VA has been largely overlooked. Traditional methods, using saliency, characterize important stimuli as statistical outliers [4] but fail to capture the Temporal Evolution of Attention (TEA), where initially salient stimuli become routine and less attention-grabbing due to continual exposure [2, 20]. This paper introduces a novel unsupervised deep learning approach using a Convolutional Variational Autoencoder and Long Short-Term Memory (CVAE-LSTM) model to detect Bayesian surprise [2] in spatial audio streams, considering factors such as time, context, and user expectations. Our findings highlight the importance of temporal context in determining the surprisal value of audio events and the selective nature of sensory processing and attention in complex environments.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [31] Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data
    Yokkampon, Umaporn
    Mowshowitz, Abbe
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    IEEE ACCESS, 2022, 10 : 57835 - 57849
  • [32] Unsupervised Deep Learning for Fault Detection on Spacecraft Using Improved Variational Autoencoder
    Xiang, Gang
    Tao, Ran
    Peng, Yu
    Tian, Kun
    Qu, Chen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5527 - 5531
  • [33] A Unified Unsupervised Gaussian Mixture Variational Autoencoder for High Dimensional Outlier Detection
    Liao, Weixian
    Guo, Yifan
    Chen, Xuhui
    Li, Pan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1208 - 1217
  • [34] UNSUPERVISED ANOMALY DETECTION USING VARIATIONAL AUTOENCODER WITH GAUSSIAN RANDOM FIELD PRIOR
    Gangloff, Hugo
    Pham, Minh-Tan
    Courtrai, Luc
    Lefevre, Sebastien
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1620 - 1624
  • [35] Unsupervised optical small bowel ischemia detection in a preclinical model using convolutional variational autoencoders
    Cheon, Gyeong Woo
    Nam, So-Hyun
    Cha, Jaepyeong
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [36] Unsupervised change-detection based on Convolutional-autoencoder Feature Extraction
    Bergamasco, Luca
    Saha, Sudipan
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [37] Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder (vol 8, pg 47072, 2020)
    Chen, Tingting
    Liu, Xueping
    Xia, Bizhong
    Wang, Wei
    Lai, Yongzhi
    IEEE ACCESS, 2020, 8 : 117062 - 117062
  • [38] Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
    Han, Kuan
    Wen, Haiguang
    Shi, Junxing
    Lu, Kun-Han
    Zhang, Yizhen
    Fu, Di
    Liu, Zhongming
    NEUROIMAGE, 2019, 198 : 125 - 136
  • [39] Fall Detection of the Elderly Using Denoising LSTM-Based Convolutional Variant Autoencoder
    Yi, Myung-Kyu
    Han, KyungHyun
    Hwang, Seong Oun
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 18556 - 18567
  • [40] Unsupervised Anomaly Video Detection via a Double-Flow ConvLSTM Variational Autoencoder
    Wang, Lin
    Tan, Haishu
    Zhou, Fuqiang
    Zuo, Wangxia
    Sun, Pengfei
    IEEE ACCESS, 2022, 10 : 44278 - 44289