Document Relevance Filtering by Natural Language Processing and Machine Learning: A Multidisciplinary Case Study of Patents

被引:0
|
作者
Bridgelall, Raj [1 ]
机构
[1] North Dakota State Univ, Coll Business, Dept Transportat & Supply Chain, POB 6050, Fargo, ND 58108 USA
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 05期
关键词
document search; supervised machine learning; unsupervised machine learning; natural language processing; latent Dirichlet allocation; non-negative matrix factorization; manifold learning; t-distributed stochastic neighbor embedding; term co-occurrence networks; RETRIEVAL;
D O I
10.3390/app15052357
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exponential growth of patent datasets poses a significant challenge in filtering relevant documents for research and innovation. Traditional semantic search methods based on keywords often fail to capture the complexity and variability in multidisciplinary terminology, leading to inefficiencies. This study addresses the problem by systematically evaluating supervised and unsupervised machine learning (ML) techniques for document relevance filtering across five technology domains: solid-state batteries, electric vehicle chargers, connected vehicles, electric vertical takeoff and landing aircraft, and light detecting and ranging (LiDAR) sensors. The contributions include benchmarking the performance of 10 classical models. These models include extreme gradient boosting, random forest, and support vector machines; a deep artificial neural network; and three natural language processing methods: latent Dirichlet allocation, non-negative matrix factorization, and k-means clustering of a manifold-learned reduced feature dimension. Applying these methods to more than 4200 patents filtered from a database of 9.6 million patents revealed that most supervised ML models outperform the unsupervised methods. An average of seven supervised ML models achieved significantly higher precision, recall, and F1-scores across all technology domains, while unsupervised methods show variability depending on domain characteristics. These results offer a practical framework for optimizing document relevance filtering, enabling researchers and practitioners to efficiently manage large datasets and enhance innovation.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Natural Language Processing and Machine Learning-Based Solution of Cold Start Problem Using Collaborative Filtering Approach
    Mishra, Kamta Nath
    Mishra, Alok
    Barwal, Paras Nath
    Lal, Rajesh Kumar
    ELECTRONICS, 2024, 13 (21)
  • [32] Implementation of document editor for natural language processing
    Tsutsumi, M.
    Akaki, K.
    Miyanaga, Y.
    Tochinai, K.
    Bulletin of the Faculty of Engineering - Hokkaido University, 1994, (167):
  • [33] Natural language processing and machine learning in the categorization of scientific papers: a study around ?cultural heritage?
    de Jesus, Ananda Fernanda
    Triques, Maria Ligia
    Segundo, Jose Eduardo Santarem
    de Albuquerque, Ana Cristina
    REVISTA IBERO-AMERICANA DE CIENCIA DA INFORMACAO, 2023, 16 (01): : 167 - 184
  • [34] RESEARCH ON THE TEXT CLASSIFICATION BASED ON NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING
    Chen Keming
    Zheng Jianguo
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2016, 22 (03): : 2484 - 2494
  • [35] Arabic natural language processing and machine learning-based systems
    Larabi Marie-Sainte S.
    Alalyani N.
    Alotaibi S.
    Ghouzali S.
    Abunadi I.
    IEEE Access, 2019, 7 : 7011 - 7020
  • [36] Detecting Phishing Attacks Using Natural Language Processing and Machine Learning
    Peng, Tianrui
    Harris, Ian G.
    Sawa, Yuki
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 300 - 301
  • [37] Towards Machine Learning Fairness Education in a Natural Language Processing Course
    Bobesh, Samantha Jane
    Miller, Tyler
    Newman, Pax
    Liu, Yudong
    Elglaly, Yasmine N.
    PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023, 2023, : 312 - 318
  • [38] Extracting Biomarker Information applying Natural Language Processing and Machine Learning
    Islam, Md Tawhidul
    Shaikh, Mostafa
    Nayak, Abhaya
    Ranganathan, Shoba
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [39] Analysis of Breakdown Reports Using Natural Language Processing and Machine Learning
    Ahmed, Mobyen Uddin
    Bengtsson, Marcus
    Salonen, Antti
    Funk, Peter
    INTERNATIONAL CONGRESS AND WORKSHOP ON INDUSTRIAL AI 2021, 2022, : 40 - 52
  • [40] CATEGORIZING TELEMEDICINE VISITS USING NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING
    Sudaria, T.
    Overcash, J.
    Nguyen, N.
    Oguntuga, A.
    VALUE IN HEALTH, 2022, 25 (07) : S597 - S597