Antiferromagnetic skyrmion-based energy-efficient leaky integrate and fire neuron device

被引:0
|
作者
Bindal, Namita [1 ,2 ]
Rajib, Md Mahadi [4 ]
Raj, Ravish Kumar [2 ,3 ]
Atulasimha, Jayasimha [4 ,5 ]
Kaushik, Brajesh Kumar [2 ]
机构
[1] MVJ Coll Engn, Dept Elect & Commun Engn, Bangalore 560037, India
[2] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee 247667, Uttarakhand, India
[3] Aarhus Univ, Dept Elect & Comp Engn, Elect & Photon Sect, DK-8000 Aarhus N, Denmark
[4] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA 23284 USA
[5] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
antiferromagnets; leaky-integrate-fire; neuron; spin-orbit-torque; thermal gradient; LATTICE; STATES;
D O I
10.1088/1361-6528/adb8c1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of energy-efficient neuromorphic hardware using spintronic devices based on antiferromagnetic (AFM) skyrmion motion on nanotracks has gained considerable interest. Owing to their properties such as robustness against external magnetic fields, negligible stray fields, and zero net topological charge, AFM skyrmions follow straight trajectories that prevent their annihilation at nanoscale racetrack edges. This makes the AFM skyrmions a more favorable candidate than the ferromagnetic (FM) skyrmions for future spintronic applications. This work proposes an AFM skyrmion-based neuron device exhibiting the leaky-integrate-fire (LIF) functionality by exploiting either a thermal gradient or a perpendicular magnetic anisotropy (PMA) gradient in the nanotrack for leaky behavior by moving the skyrmion in the hotter region or the region with lower PMA, respectively, to minimize the system energy. Furthermore, it is shown that the AFM skyrmion couples efficiently to the soft FM layer of a magnetic tunnel junction, enabling efficient read-out of the skyrmion. The maximum change of 9.2% in tunnel magnetoresistance is estimated while detecting the AFM skyrmion. Moreover, the proposed neuron device has an energy dissipation of 4.32 fJ per LIF operation, thus paving the way for developing energy-efficient devices in AFM spintronics for neuromorphic computing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Electrohydrodynamically Printed Flexible Organic Memristor for Leaky Integrate and Fire Neuron
    Xu, Yichun
    Wang, Hongyang
    Ye, Dong
    Yang, Rui
    Huang, Yongan
    Miao, Xiangshui
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (01) : 116 - 119
  • [42] A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing
    Nahmias, Mitchell A.
    Shastri, Bhavin J.
    Tait, Alexander N.
    Prucnal, Paul R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (05)
  • [43] Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron
    Dutta, S.
    Saha, A.
    Panda, P.
    Chakraborty, W.
    Gomez, J.
    Khanna, A.
    Gupta, S.
    Roy, K.
    Datta, S.
    2019 SYMPOSIUM ON VLSI TECHNOLOGY, 2019, : T140 - T141
  • [44] A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator
    Stoliar, Pablo
    Tranchant, Julien
    Corraze, Benoit
    Janod, Etienne
    Besland, Marie-Paule
    Tesler, Federico
    Rozenberg, Marcelo
    Cario, Laurent
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (11)
  • [45] A Biological Plausible Generalized Leaky Integrate-and-Fire Neuron Model
    Wang, Zhenzhong
    Guo, Lilin
    Adjouadi, Malek
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 6810 - 6813
  • [46] Analysis of the Leaky Integrate-and-Fire neuron model for GPU implementation
    Venetis, Ioannis E.
    Provata, Astero
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 163 : 1 - 19
  • [47] A low power circuit of a leaky integrate and fire neuron with global reset
    Shamsi, Jafar
    Mohammadi, Karim
    Shokouhi, Shahriar B.
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 366 - 369
  • [48] Computing with the leaky integrate-and-fire neuron: Logarithmic computation and multiplication
    Tal, D
    Schwartz, EL
    NEURAL COMPUTATION, 1997, 9 (02) : 305 - 318
  • [49] Analysis of the Leaky Integrate-and-Fire neuron model for GPU implementation
    Venetis, Ioannis E.
    Provata, Astero
    Journal of Parallel and Distributed Computing, 2022, 163 : 1 - 19
  • [50] A Stacked Memristive Device Enabling Both Analog and Threshold Switching Behaviors for Artificial Leaky Integrate and Fire Neuron
    Bian, Jingyao
    Tao, Ye
    Wang, Zhongqiang
    Zhang, Xiaohan
    Zhao, Xiaoning
    Lin, Ya
    Xu, Haiyang
    Liu, Yichun
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (09) : 1436 - 1439