The Phase Separation Control in All-Polymer Solar Cells

被引:0
|
作者
Liang, Qiuju [1 ,2 ]
Miao, Zongcheng [1 ,3 ]
Liu, Xingpeng [1 ,4 ]
Liu, Zefeng [1 ,4 ]
Xu, Zhenhui [4 ]
Zhang, Yan [1 ,4 ]
Zhang, Zhe [4 ]
Zhai, Wenxuan [4 ]
Song, Chunpeng [4 ,5 ]
Xin, Jingming [4 ]
Yin, Xipeng [4 ]
Liu, Jiangang [4 ,5 ]
机构
[1] Xijing Univ, Technol Inst Mat & Energy Sci TIMES, Sch Elect Informat, Xian, Peoples R China
[2] Northwestern Polytech Univ, Sch Microelect, Xian, Peoples R China
[3] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian, Peoples R China
[4] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[5] Northwestern Polytech Univ, Res & Dev Inst, Shenzhen, Peoples R China
来源
SUSMAT | 2025年
基金
中国博士后科学基金;
关键词
all-polymer solar cells; kinetics; morphology; phase separation; thermodynamics; X-RAY SCATTERING; MOLECULAR-WEIGHT; SMALL-ANGLE; PERFORMANCE; ACCEPTORS; EFFICIENCY; MORPHOLOGY; DONOR; AGGREGATION; CONVERSION;
D O I
10.1002/sus2.70003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-polymer solar cells (all-PSCs) are of interest owing to their unique advantages, including remarkably improved device stability and exceptional mechanical stretchability. Over recent years, there has been a notable increase in the power conversion efficiency (PCE) of all-PSCs, largely attributed to advancements in the morphology control of the active layer. Notably, the domain size is of paramount importance as it impacts critical factors such as exciton dissociation, charge transport, and collection. However, the low glass transition temperature of conjugated polymers, coupled with a minimal change in mixing entropy, often results in an excessive degree of phase separation. Consequently, it is essential to comprehend the evolution of phase separation and develop strategies to regulate the domain size. In this review, we elucidate the key parameters that contribute to the enhancement of phase separation and present qualitative and quantitative characterization techniques for domain size. Building on this foundation, we introduce the strategies and principles for regulating domain sizes, encompassing factors such as crystallinity, miscibility, and molecular conformation from a thermodynamic perspective, as well as the film-forming kinetics and the crystallization sequence from a kinetic perspective. Lastly, we offer insights into the current challenges and potential future prospects for the evolution of all-PSCs.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, 64 (03) : 408 - 412
  • [22] Highly efficient all-polymer solar cells enabled by control of polymer blend morphology
    Earmme, Taeshik
    Hwang, Ye-Jin
    Jenekhe, Samson A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [23] Polymer acceptors for all-polymer solar cells附视频
    Xiaofei Ji
    Zuo Xiao
    Huiliang Sun
    Xugang Guo
    Liming Ding
    Journal of Semiconductors, 2021, (08) : 8 - 11
  • [24] Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells
    Zhao, Ruyan
    Wang, Ning
    Yu, Yingjian
    Liu, Jun
    CHEMISTRY OF MATERIALS, 2020, 32 (03) : 1308 - 1314
  • [25] Polymer donor-polymer acceptor (all-polymer) solar cells
    Facchetti, Antonio
    MATERIALS TODAY, 2013, 16 (04) : 123 - 132
  • [26] Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation
    Kang, Hyunbum
    Uddin, Mohammad Afsar
    Lee, Changyeon
    Kim, Ki-Hyun
    Thanh Luan Nguyen
    Lee, Wonho
    Li, Yuxiang
    Wang, Cheng
    Woo, Han Young
    Kim, Bumjoon J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (06) : 2359 - 2365
  • [27] Semitransparent all-polymer solar cells through lamination
    Xia, Yuxin
    Xu, Xiaofeng
    Aguirre, Luis Ever
    Inganas, Olle
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) : 21186 - 21192
  • [28] Flexible, highly efficient all-polymer solar cells
    Kim, Taesu
    Kim, Jae-Han
    Kang, Tae Eui
    Lee, Changyeon
    Kang, Hyunbum
    Shin, Minkwan
    Wang, Cheng
    Ma, Biwu
    Jeong, Unyong
    Kim, Taek-Soo
    Kim, Bumjoon J.
    NATURE COMMUNICATIONS, 2015, 6
  • [29] Flexible, highly efficient all-polymer solar cells
    Taesu Kim
    Jae-Han Kim
    Tae Eui Kang
    Changyeon Lee
    Hyunbum Kang
    Minkwan Shin
    Cheng Wang
    Biwu Ma
    Unyong Jeong
    Taek-Soo Kim
    Bumjoon J. Kim
    Nature Communications, 6
  • [30] Device physics of inverted all-polymer solar cells
    Brenner, Thomas J. K.
    Hwang, Inchan
    Greenham, Neil C.
    McNeill, Christopher R.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)