Preparation of Ti/RuO2-IrO2 electrodes and their application in broad-spectrum electrochemical detection of COD

被引:0
|
作者
Han, Yanhe [1 ]
Zhao, Qingpeng [1 ]
Liu, Ting [1 ]
Liu, Lina [2 ]
Ma, Xuejiao [1 ]
Wang, Nannan [1 ]
机构
[1] Beijing Inst Petrochem Technol, Dept Environm Engn, Beijing 102617, Peoples R China
[2] Baoding Hualian Top Technol, Hebei 071000, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
COD; Detection; Electrochemical behavior; Ti/RuO2-IrO2; electrode; CHEMICAL OXYGEN-DEMAND; SENSOR; DEGRADATION; ANODE;
D O I
10.1016/j.jenvman.2025.124699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An electrode with RuO2 and IrO2 co-deposited on a Ti surface (Ti/RuO2-IrO2), notable for its high catalytic activity and stability, was developed for the rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). This study thoroughly examined factors influencing electrode preparation, COD detection mechanisms, and the factors affecting COD detection, as well as broad-spectrum analysis. Under optimal conditions, which include a deposition time of 53.5 min, a current density of 5.5 mA/cm2, and 2.35 mmol of RuCl3, the electrode achieved a linear correlation coefficient of 0.99 for COD detection. The co-doping of RuO2 and IrO2 significantly enhanced the electrode's specific surface area and charge transfer rate, thereby improving the oxidation of organic compounds. The detection limit for COD was established at 1.8 mg/L, with a range of 0-250 mg/L, using an oxidation potential of 0.90 V and an electrolysis time of 150 s at an initial electrolyte pH of 6 with 0.03 mol/L NaNO3. The electrode effectively oxidized organic compounds across this range and demonstrated tolerance to chloride concentrations up to 800 mg/L. Electrode stability was confirmed through 30 repetitive cycles with no significant performance degradation. The detection results for simulated water samples were in strong agreement with the results obtained from the dichromate colorimetric method, with a linear equation of y = 0.01x+1.11, with an R2 of 0.99. The detection outcomes for six different sources of real water samples indicated consistent correlation between the electrochemical COD detection method using the Ti/RuO2-IrO2 electrode and the dichromate colorimetric method. This research showed the Ti/RuO2-IrO2 electrode has certain potential as COD detection element, leveraging its high charge transfer rate and extensive active area.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Selective electrochemical degradation of 4-chlorophenol at a Ti/RuO2-IrO2 anode in chloride rich wastewater
    De Coster, Jonas
    Vanherck, Wouter
    Appels, Lise
    Dewil, Raf
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 190 : 61 - 71
  • [12] Electrochemical treatment of mature landfill leachate using Ti/RuO2-IrO2 and Al electrode: optimization and mechanism
    Li, Juan
    Yang, Zhao-hui
    Xu, Hai-yin
    Song, Pei-pei
    Huang, Jing
    Xu, Rui
    Zhang, Yi-jie
    Zhou, Yan
    RSC ADVANCES, 2016, 6 (53): : 47509 - 47519
  • [13] AN APPLICATION OF THE THERMAL-DESORPTION METHOD TO THE SURFACE CHARACTERIZATION OF RUO2-IRO2 AND RUO2-TIO2 COATED TITANIUM ELECTRODES
    TAKASU, Y
    TSUKADA, K
    NISHIMURA, K
    HIROMINE, T
    YAHIKOZAWA, K
    ELECTROCHIMICA ACTA, 1992, 37 (06) : 1029 - 1031
  • [14] Three-Dimensional Electrochemical Oxidation System with RuO2-IrO2/Ti as the Anode for Ammonia Wastewater Treatment
    Huang, Zhengmin
    Zhao, Li
    Zhu, Jingping
    He, Dongming
    SUSTAINABILITY, 2024, 16 (05)
  • [15] Electrochemical treatment of ammonia in wastewater by RuO2-IrO2-TiO2/Ti electrodes
    Chen, Jinluan
    Shi, Hanchang
    Lu, Jinghua
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2007, 37 (10) : 1137 - 1144
  • [16] Ti/RuO2-IrO2阳极在碱性体系的失效行为
    景海龙
    杨泽坤
    杨海涛
    胡超权
    俞小花
    李荣兴
    有色金属工程, 2023, 13 (03) : 23 - 30
  • [17] Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes
    Zhi, Dan
    Zhang, Jia
    Wang, Jianbing
    Luo, Lin
    Zhou, Yuzhou
    Zhou, Yaoyu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 265
  • [18] Electrochemical nitrate removal by magnetically immobilized nZVI anode on ammonia-oxidizing plate of RuO2-IrO2/Ti
    Hong, Xiaoting
    Du, Yingying
    Zhang, Haibin
    Xue, Wenjuan
    Hui, Kwan San
    Fang, Gangming
    CHEMOSPHERE, 2022, 294
  • [19] Microwave-prepared Ti/RuO2-IrO2 anodes: Influence of IrO2 content on atrazine removal
    Gonzaga, Isabelle M. D.
    Doria, Aline R.
    Castro, Raira S. S.
    Souza, Michel R. R.
    Rodrigo, Manuel A.
    Eguiluz, Katlin I. B.
    Salazar-Banda, Giancarlo R.
    ELECTROCHIMICA ACTA, 2022, 426
  • [20] Parameter evaluation of the anodic oxidation of phenol in wastewater using a Ti/RuO2-IrO2 anode
    De Coster, Jonas
    Appels, Lise
    Dewil, Raf
    DESALINATION AND WATER TREATMENT, 2017, 82 : 322 - 331