Accurate Segmentation of Brain Tumors in Magnetic Resonance Images with Pyramid Stage Decomposition Network Approach

被引:0
|
作者
Ari, Berna Gurler [1 ]
Uzen, Huseyin [2 ]
Sengur, Abdulkadir [3 ]
机构
[1] Inonu Univ, Bilgisayar Muhendisligi Bolumu, Malatya, Turkiye
[2] Bingo Univ, Bilgisayar Muhendisligi Bolumu, Bingo, Turkiye
[3] Firat Univ, Elekt Elekt Teknol Bolumu, Elazig, Turkiye
关键词
Brain tumors; Magnetic Resonance Imaging (MRI); Segmentation; Pyramid Scene Parsing Network (PSPNet); Medical Image Analysis;
D O I
10.1109/SIU61531.2024.10600920
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores the utilization of the Pyramid Scene Parsing Network (PSPNet) architecture to achieve accurate segmentation of brain tumors in magnetic resonance (MR) images. Experimental evaluations were conducted on different pre-trained backbone network models, including Vgg16, Inceptionv3, Mobilenetv2, Efficientnetb0, Resnet18, Resnet34, Resnet50, Resnet101, Resnext50, and Resnext101, assessing the performance of each model in brain tumor segmentation. The results highlight the VGG16-PSPNet model as the most successful, showcasing high F1-score, mIoU, precision, recall, and accuracy values.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images
    Iván A. Rodríguez-Méndez
    Raquel. Ureña
    Enrique Herrera-Viedma
    Soft Computing, 2019, 23 : 10105 - 10117
  • [12] Brain Tumor Segmentation Using Graph Coloring Approach in Magnetic Resonance Images
    Bagheri, Rouholla
    Monfared, Jalal Haghighat
    Montazeriyoun, Mohammad Reza
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2021, 11 (04): : 285 - 290
  • [13] Fuzzy clustering approach for brain tumor tissue segmentation in magnetic resonance images
    Rodriguez-Mendez, Ivan A.
    Urena, Raquel
    Herrera-Viedma, Enrique
    SOFT COMPUTING, 2019, 23 (20) : 10105 - 10117
  • [14] A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images
    Fabien Szabo De Edelenyi
    Christophe Rubin
    François Estève
    Sylvie Grand
    Michel Décorps
    Virgine Lefournier
    Jean-François Le Bas
    Chantal Rémy
    Nature Medicine, 2000, 6 : 1287 - 1289
  • [15] A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors:: nosologic images
    De Edeleny, FS
    Rubin, C
    Estève, F
    Grand, S
    Décorps, M
    Lefournier, V
    Le Bas, JF
    Rémy, C
    NATURE MEDICINE, 2000, 6 (11) : 1287 - 1289
  • [16] Automatic segmentation of brain tumors in magnetic resonance imaging
    Mascarenhas, Layse Ribeiro
    Ribeiro Junior, Audenor dos Santos
    Ramos, Rodrigo Pereira
    EINSTEIN-SAO PAULO, 2020, 18 : eAO4948
  • [17] Segmentation of Brain Tumor Parts in Magnetic Resonance Images
    Mikulka, Jan
    Burget, Radim
    Riha, Kamil
    Gescheidtova, Eva
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 565 - 568
  • [18] Automatic Segmentation of Neonatal Brain Magnetic Resonance Images
    Devi, Chelli N.
    Chandrasekharan, Anupama
    Sundararaman, V. K.
    Alex, Zachariah C.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [19] LEGION - Based segmentation of magnetic resonance images of the brain
    Sivaradje, G
    Saraswady, D
    Dananjayan, P
    IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 311 - 315
  • [20] Memory Network-Based Quality Normalization of Magnetic Resonance Images for Brain Segmentation
    Su, Yang
    Wei, Jie
    Ma, Benteng
    Xia, Yong
    Zhang, Yanning
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 58 - 67