Evaluation of Sb/Bi heterostructure as anode material for Li/Na/K-ion intercalation batteries: A DFT study

被引:0
|
作者
Anwar, Maida [1 ]
Durrani, Mamoona [2 ]
Buzdar, Saeed Ahmad [3 ]
Majid, Abdul [4 ]
Alarfaji, Saleh S. [5 ,6 ]
Khan, Muhammad Isa [2 ]
机构
[1] Univ Padua, Dept Phys & Astron Galileo Galilei, Via 8 Febbraio 2, I-35122 Padua, Italy
[2] Islamia Univ Bahawalpur, Dept Phys, Rahim Yar Khan Campus, Bahawalpur, Pakistan
[3] Islamia Univ Bahawalpur, Inst Phys, Bagdad Ul Jadeed Campus, Bahawalpur, Pakistan
[4] Univ Gujrat, Dept Phys, Gujrat, Pakistan
[5] King Khalid Univ, Fac Sci, Dept Chem, POB 9004, Abha 61413, Saudi Arabia
[6] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
关键词
Heterostructure; Adsorption energy; Open circuit voltage; PROMISING ANODE; THEORETICAL PREDICTION; LITHIUM; LI; ANTIMONENE; CAPACITY; NA; PHOSPHORENE; CAPABILITY; BOROPHENE;
D O I
10.1016/j.comptc.2025.115088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Sb/Bi heterostructure, a central focus in advanced metal-ion (AM) battery research, stands out for its substantial surface area and impressive capacity. Using density functional theory, we identify it as a highly promising anode material for lithium-, sodium-, and potassium-ion batteries. Our calculations demonstrate stable adherence of Li, Na, and K atoms to the Sb/Bi surface, with adsorption energies of-1.71 eV,-1.92 eV, and-2.4 eV, respectively, indicating favorable stability during the lithiation, sodiation, and potassiation processes. Incorporating Sb/Bi in electrodes displays exceptional conductivity, resulting in a lower anode voltage and good capacity. Theoretical capacities are 2106, 88.63, and 113.95 mAh/g for Li, Na, and K batteries. Notably, the Sb/ Bi heterostructure exhibits thermal stability and metallic behavior. Open circuit voltage (OCV) values recorded for Li, Na, and K ions on the Sb/Bi heterostructure are 0.14 V, 0.20 V, and 0.17 V, respectively. Hirschfeld charge analysis provides insights into charge distribution, contributing to the understanding of Sb/Bi electrochemical behavior. This study highlights the potential of Sb/Bi heterojunctions, offering improved electrochemical performance and innovative pathways for experimental synthesis in the realm of advanced metal-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] B3S2 monolayer as an anode material for Na/K-ion batteries: a first-principles study
    Wang, Danhong
    Yang, Zhifang
    Li, Wenliang
    Zhang, Jingping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (36) : 24468 - 24474
  • [42] Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study
    Lv, Xiaodong
    Li, Fengyu
    Gong, Jian
    Gu, Jinxing
    Lin, Shiru
    Chen, Zhongfang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (16) : 8902 - 8912
  • [43] Single- and multi-layer arsenene as an anode material for Li, Na, and K-ion battery applications
    Kanli, Muammer
    Kurban, Mustafa
    Ozdemir, Burak
    Onen, Abdullatif
    Durgun, Engin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 186 (186)
  • [44] Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries
    Bao, Jinna
    Zhu, Linsheng
    Wang, Haochi
    Han, Shufeng
    Jin, Yuhang
    Zhao, Guoqiang
    Zhu, Yiheng
    Guo, Xin
    Hou, Jianhua
    Yin, Hong
    Tian, Jian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41): : 23329 - 23335
  • [45] Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries
    Shi, L.
    Zhao, T. S.
    Xu, A.
    Xu, J. B.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) : 16377 - 16382
  • [46] Carbon Anode Materials: A Detailed Comparison between Na-ion and K-ion Batteries
    Zhang, Lupeng
    Wang, Wei
    Lu, Shanfu
    Xiang, Yan
    ADVANCED ENERGY MATERIALS, 2021, 11 (11)
  • [47] Na/K Diffusion in FeP as an Anode Material for Ion Batteries
    Fan, Hongwei
    Li, Wenting
    Wei, Hezhuan
    An, Shengli
    Qu, Xinping
    Jia, Guixiao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12): : 6495 - 6501
  • [48] Nb2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (21) : 12288 - 12295
  • [49] Investigation on TiS2 electrode material for intercalation batteries, namely Li, Na, Mg, Al, K, Ca, and Zn -ion cells: A DFT study
    Safaeipour, Sepideh
    Kalantarian, Mohammad Mahdi
    Shabani, Mohsen Ostad
    Faeghinia, Aida
    RESULTS IN CHEMISTRY, 2024, 7
  • [50] Catalytic graphitization of anthracite-derived carbon as the anode for Li/K-ion batteries
    Yang, Fu
    Chen, Hongyan
    Guo, Jialin
    Zheng, Peng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (08) : 4862 - 4868