Advancing Cybersecurity with AI: A Multimodal Fusion Approach for Intrusion Detection Systems

被引:0
|
作者
Agrafiotis, George [1 ]
Kalafatidis, Sarantis [1 ]
Giapantzis, Konstantinos [1 ]
Lalas, Antonios [1 ]
Votis, Konstantinos [1 ]
机构
[1] Ctr Res & Technol Hellas, Informat Technol Inst, Maroussi, Greece
关键词
AI; IDS; 5G; Cybersecurity;
D O I
10.1109/MeditCom61057.2024.10621237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel AI-enabled Intrusion Detection System (IDS) that enhances cybersecurity by integrating multimodal data analysis and AI fusion techniques. Through analysis of network traffic data from four test environments, it illustrates the benefits of a more robust detection strategy utilizing multiple modalities of the network traffic. The modalities extracted are designed to be protocol-agnostic, enabling their application across various network protocols, thereby broadening the system's applicability and effectiveness. Fusion of these models' outputs results in a robust, adaptable solution capable of real-time threat detection with improved accuracy across different network protocols.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [21] Detection of Adversarial Attacks in AI-Based Intrusion Detection Systems Using Explainable AI
    Tcydenova, Erzhena
    Kim, Tae Woo
    Lee, Changhoon
    Park, Jong Hyuk
    Human-centric Computing and Information Sciences, 2021, 11
  • [22] CANival: A multimodal approach to intrusion detection on the vehicle CAN bus
    Kang, Hyunjae
    Vo, Thanh
    Kim, Huy Kang
    Hong, Jin B.
    VEHICULAR COMMUNICATIONS, 2024, 50
  • [23] A Multimodal Fusion Approach for Bullet Identification Systems
    Bigdeli, Saeed
    Moghaddam, Mohsen Ebrahimi
    JOURNAL OF FORENSIC SCIENCES, 2019, 64 (03) : 741 - 753
  • [24] Overview on Intrusion Detection Systems Design Exploiting Machine Learning for Networking Cybersecurity
    Dini, Pierpaolo
    Elhanashi, Abdussalam
    Begni, Andrea
    Saponara, Sergio
    Zheng, Qinghe
    Gasmi, Kaouther
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [25] HYRIDE: HYbrid and Robust Intrusion DEtection approach for enhancing cybersecurity in Industry 4.0
    Srivastav, Shubham
    Shukla, Amit K.
    Kumar, Sandeep
    Muhuri, Pranab K.
    INTERNET OF THINGS, 2025, 30
  • [26] A Comprehensive Survey of Databases and Deep Learning Methods for Cybersecurity and Intrusion Detection Systems
    Gumusbas, Dilara
    Yildirim, Tulay
    Genovese, Angelo
    Scotti, Fabio
    IEEE SYSTEMS JOURNAL, 2021, 15 (02): : 1717 - 1731
  • [27] Mathematical Analysis of Sensor Fusion for Intrusion Detection Systems
    Thomas, Ciza
    Balakrishnan, N.
    2009 FIRST INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS 2009), 2009, : 147 - 156
  • [28] Adversarial Attack Detection Approach for Intrusion Detection Systems
    Degirmenci, Elif
    Ozcelik, Ilker
    Yazici, Ahmet
    IEEE ACCESS, 2024, 12 : 195996 - 196009
  • [29] Intrusion Event Identification Approach for Distributed Vibration Sensing Using Multimodal Fusion
    Zhang, Yu
    Zhao, Wenan
    Dong, Lulu
    Zhang, Chengsan
    Peng, Gangding
    Shang, Ying
    Liu, Guangqiang
    Yao, Chunmei
    Liu, Shouling
    Wan, Na
    Ni, Jiasheng
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 37114 - 37124
  • [30] AI-Based Cybersecurity Systems
    Ogiela, Marek R.
    Ogiela, Lidia
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 166 - 173