Advancing Cybersecurity with AI: A Multimodal Fusion Approach for Intrusion Detection Systems

被引:0
|
作者
Agrafiotis, George [1 ]
Kalafatidis, Sarantis [1 ]
Giapantzis, Konstantinos [1 ]
Lalas, Antonios [1 ]
Votis, Konstantinos [1 ]
机构
[1] Ctr Res & Technol Hellas, Informat Technol Inst, Maroussi, Greece
关键词
AI; IDS; 5G; Cybersecurity;
D O I
10.1109/MeditCom61057.2024.10621237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel AI-enabled Intrusion Detection System (IDS) that enhances cybersecurity by integrating multimodal data analysis and AI fusion techniques. Through analysis of network traffic data from four test environments, it illustrates the benefits of a more robust detection strategy utilizing multiple modalities of the network traffic. The modalities extracted are designed to be protocol-agnostic, enabling their application across various network protocols, thereby broadening the system's applicability and effectiveness. Fusion of these models' outputs results in a robust, adaptable solution capable of real-time threat detection with improved accuracy across different network protocols.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [1] An Adversarial Approach for Explainable AI in Intrusion Detection Systems
    Marino, Daniel L.
    Wickramasinghe, Chathurika S.
    Manic, Milos
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3237 - 3243
  • [2] Cybersecurity in the AI era: analyzing the impact of machine learning on intrusion detection
    Dong, Huiyao
    Kotenko, Igor
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, : 3915 - 3966
  • [3] Advancing cybersecurity: a comprehensive review of AI-driven detection techniques
    Salem, Aya H.
    Azzam, Safaa M.
    Emam, O. E.
    Abohany, Amr A.
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [4] Multimodal Evolution Approach to Multidimensional Intrusion Detection
    翁广安
    余胜生
    周敬利
    Journal of Southwest Jiaotong University, 2006, (03) : 212 - 217
  • [5] Advancing Network Security in Industrial IoT: A Deep Dive into AI-Enabled Intrusion Detection Systems
    Shahin, Mohammad
    Maghanaki, Mazdak
    Hosseinzadeh, Ali
    Chen, F. Frank
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [6] Ensemble Diversity Pruning on Cybersecurity: Optimizing Intrusion Detection Systems
    Lucas, Thiago Jose
    Passos Junior Passos, Leandro Aparecido
    Rodrigues, Douglas
    Jodas, Danilo
    Papa, Joao Paulo
    Pontara da Costa, Kelton Augusto
    Scherer, Rafal
    2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [7] Review: Deep Learning Methods for Cybersecurity and Intrusion Detection Systems
    Macas, Mayra
    Wu, Chunming
    2020 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2020), 2020,
  • [8] Deep Learning Based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data
    Phong Thanh Nguyen
    Vy Dang Bich Huynh
    Khoa Dang Vo
    Phuong Thanh Phan
    Elhoseny, Mohamed
    Dac-Nhuong Le
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2555 - 2571
  • [9] Bridging the gap: advancing the transparency and trustworthiness of network intrusion detection with explainable AI
    Islam, Md. Tohidul
    Syfullah, Md. Khalid
    Rashed, Md. Golam
    Das, Dipankar
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5337 - 5360
  • [10] A Minimax Approach to Sensor Fusion for Intrusion Detection
    Pugh, Matthew
    2015 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2015, : 383 - 388