Towards Better Representations for Multi-Label Text Classification with Multi-granularity Information

被引:0
|
作者
Li, Fangfang [1 ]
Su, Puzhen [1 ]
Duan, Junwen [1 ]
Xiao, Weidong [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label text classification (MLTC) aims to assign multiple labels to a given text. Previous works have focused on text representation learning and label correlations modeling using pre-trained language models (PLMs). However, studies have shown that PLMs generate word frequency-oriented text representations, causing texts with different labels to be closely distributed in a narrow region, which is difficult to classify. To address this, we present a novel framework, CL(Contrastive Learning)MIL (Multi-granularity Information Learning), to refine the text representation for MLTC task. We first use contrastive learning to generate uniform initial text representation and incorporate label frequency implicitly. Then, we design a multi-task learning module to integrate multi-granularity (diverse text-labels correlations, label-label relations and label frequency) information into text representations, enhancing their discriminative ability. Experimental results demonstrate the complementarity of the modules in CL-MIL, improving the quality of text representations, and yielding stable and competitive improvements for MLTC.
引用
收藏
页码:9470 / 9480
页数:11
相关论文
共 50 条
  • [21] A Text Vector Representation Model Merging Multi-Granularity Information
    Nie W.
    Chen Y.
    Ma J.
    Data Analysis and Knowledge Discovery, 2019, 3 (09) : 45 - 52
  • [22] Metalearning Applied to Multi-label Text Classification
    dos Santos, Vania Batista
    de Campos Merschmann, Luiz Henrique
    PROCEEDINGS OF 16TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS ON DIGITAL TRANSFORMATION AND INNOVATION, SBSI 2020, 2020,
  • [23] All is attention for multi-label text classification
    Liu, Zhi
    Huang, Yunjie
    Xia, Xincheng
    Zhang, Yihao
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1249 - 1270
  • [24] Image to Text Translation by Multi-Label Classification
    Nasierding, Gulisong
    Kouzani, Abbas Z.
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 247 - +
  • [25] Scalable Multi-Label Arabic Text Classification
    Ahmed, Nizar A.
    Shehab, Mohammed A.
    Al-Ayyoub, Mahmoud
    Hmeidi, Ismail
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, : 212 - 217
  • [26] Multi-label Classification of Legislative Text into EuroVoc
    Boella, Guido
    Di Caro, Luigi
    Lesmo, Leonardo
    Daniele, Rispoli
    Robaldo, Livio
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS (JURIX 2012), 2012, 250 : 21 - 30
  • [27] A Neural Architecture for Multi-label Text Classification
    Coope, Sam
    Bachrach, Yoram
    Zukov-Gregoric, Andrej
    Rodriguez, Jose
    Maksak, Bogdan
    McMurtie, Conan
    Bordbar, Mahyar
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2019, 868 : 676 - 691
  • [28] Multi-label arabic text classification: an overview
    Aljedani N.
    Alotaibi R.
    Taileb M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (10): : 694 - 706
  • [29] Multi-Label Arabic Text Classification: An Overview
    Aljedani, Nawal
    Alotaibi, Reem
    Taileb, Mounira
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 694 - 706
  • [30] Research on Multi-Classification and Multi-Label in Text Categorization
    Hua, Liu
    2009 INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS, VOL 2, PROCEEDINGS, 2009, : 86 - 89