Predicting physical fitness levels from resting ECG data: a machine learning approach in cardiovascular assessment

被引:0
|
作者
Cohen-Shelly, M. [1 ]
Cohen, J. [1 ]
Zimlichman, E. [1 ]
Rahman, N. [1 ]
Klempfner, R. [1 ]
Maor, E. [1 ]
Segev, A. [1 ]
Raanani, E. [1 ]
Sabbag, A. [1 ]
Masalha, E. [1 ]
机构
[1] Sheba Tel Ha Shomer Hosp, Ramat Gan, Israel
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [21] New approach for predicting nitrogen and pigments in maize from hyperspectral data and machine learning models
    da Silva, Bianca Cavalcante
    Prado, Renato de Mello
    Baio, Fabio Henrique Rojo
    Campos, Cid Naudi Silva
    Teodoro, Larissa Pereira Ribeiro
    Teodoro, Paulo Eduardo
    Santana, Dthenifer Cordeiro
    Fernandes, Thiago Feliph Silva
    da Silva Jr, Carlos Antonio
    Loureiro, Elisangela de Souza
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 33
  • [22] Predicting Refractive Surgery Outcome: Machine Learning Approach With Big Data
    Achiron, Asaf
    Gur, Zvi
    Aviv, Uri
    Hilely, Assaf
    Mimouni, Michael
    Karmona, Lily
    Rokach, Lior
    Kaiserman, Igor
    JOURNAL OF REFRACTIVE SURGERY, 2017, 33 (09) : 592 - 597
  • [23] Machine Learning That Reproduces Physical Phenomena from Data
    Tanaka Y.
    NTT Technical Review, 2023, 21 (10): : 15 - 19
  • [24] Predicting academic performance associated with physical fitness of primary school students using machine learning methods
    Xu, Keyun
    Sun, Zhiyuan
    COMPLEMENTARY THERAPIES IN CLINICAL PRACTICE, 2023, 51
  • [25] Machine Learning Approach to Diagnose Schizophrenia Based on Effective Connectivity of Resting EEG Data
    Masychev, K.
    Ciprian, C.
    Ravan, M.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [26] Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023
    Hossain, Sorif
    Hasan, Mohammad Kamrul
    Faruk, Mohammad Omar
    Aktar, Nelufa
    Hossain, Riyadh
    Hossain, Kabir
    BMC CARDIOVASCULAR DISORDERS, 2024, 24 (01)
  • [27] Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data
    Drouard, Gabin
    Mykkanen, Juha
    Heiskanen, Jarkko
    Pohjonen, Joona
    Ruohonen, Saku
    Pahkala, Katja
    Lehtimaki, Terho
    Wang, Xiaoling
    Ollikainen, Miina
    Ripatti, Samuli
    Pirinen, Matti
    Raitakari, Olli
    Kaprio, Jaakko
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [28] A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis
    Mezzatesta, Sabrina
    Torino, Claudia
    De Meo, Pasquale
    Fiumara, Giacomo
    Vilasi, Antonio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 177 : 9 - 15
  • [29] Predicting Length of Stay for Cardiovascular Hospitalizations in the Intensive Care Unit: Machine Learning Approach
    Alsinglawi, Belal
    Alnajjar, Fady
    Mubin, Omar
    Novoa, Mauricio
    Alorjani, Mohammed
    Karajeh, Ola
    Darwish, Omar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5442 - 5445
  • [30] Diagnosis of cardiovascular abnormalities from Compressed ECG: A Data Mining based Approach
    Sufi, Fahim
    Mahmood, Abdun
    Khalil, Ibrahim
    2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 60 - 63