Bayesian Functional Region Selection

被引:0
|
作者
Zhu, Hongxiao [1 ]
Sun, Yizhi [1 ]
Lee, Jaeyoung [1 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
来源
STAT | 2025年 / 14卷 / 01期
关键词
Bayesian variable selection; functional data; functional regression; region selection; VARIABLE SELECTION; REGRESSION;
D O I
10.1002/sta4.70047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Local regions on curves, images and other high-dimensional objects often contain critical information for interpretation, prediction and decision-making. Therefore, detecting local regions on functional data that are relevant to a variable of interest is highly desirable. We propose a Bayesian method for functional regression to select local regions on functional predictors that are relevant to a scalar response. The region selection is achieved through sparse estimation of the regression coefficient function. We adopt compactly supported and overcomplete basis to capture local features of the coefficient function and propose a spike-and-slab prior coupled with a structured Ising hyper-prior to encourage continuous shrinkage of nearby regions. Our proposed Bayesian framework accommodates both continuous and binary responses, resulting in posterior inference that naturally captures the uncertainty of the model parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On model selection in Bayesian regression
    Mostofi, Amin Ghalamfarsa
    Behboodian, Javad
    METRIKA, 2007, 66 (03) : 259 - 268
  • [42] Bayesian screening for feature selection
    Gould, A. Lawrence
    Baumgartner, Richard
    Zhao, Amanda
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2022, 32 (06) : 832 - 857
  • [43] Bayesian consistent belief selection
    Chambers, Christopher P.
    Hayashi, Takashi
    JOURNAL OF ECONOMIC THEORY, 2010, 145 (01) : 432 - 439
  • [44] Matroid Bayesian Online Selection
    DeHaan, Ian
    Pashkovich, Kanstantsin
    ALGORITHMIC GAME THEORY, SAGT 2024, 2024, 15156 : 405 - 422
  • [45] X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue
    Buchner, J.
    Georgakakis, A.
    Nandra, K.
    Hsu, L.
    Rangel, C.
    Brightman, M.
    Merloni, A.
    Salvato, M.
    Donley, J.
    Kocevski, D.
    ASTRONOMY & ASTROPHYSICS, 2014, 564
  • [46] ON PROPERTIES OF SUBSET SELECTION PROCEDURES (BAYESIAN AND NON-BAYESIAN)
    DEELY, JJ
    GUPTA, SS
    TECHNOMETRICS, 1966, 8 (01) : 205 - &
  • [47] Bayesian varying coefficient model with selection: An application to functional mapping (vol 70, pg 24, 2020)
    Heuclin, B.
    Mortier, F.
    Trottier, C.
    Denis, M.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (05) : 1413 - 1413
  • [48] Consistent and Scalable Bayesian Joint Variable and Graph Selection for Disease Diagnosis Leveraging Functional Brain Network∗
    Cao, Xuan
    Lee, Kyoungjae
    BAYESIAN ANALYSIS, 2024, 19 (03): : 895 - 923
  • [49] Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI
    Banik, Asish
    Maiti, Taps
    Bender, Andrew
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (04) : 327 - 343
  • [50] Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data
    Lee, Kuo-Jung
    Jones, Galin L.
    Caffo, Brian S.
    Bassett, Susan S.
    BAYESIAN ANALYSIS, 2014, 9 (03): : 699 - 731