Histological analysis of anterior eye development in the brown anole lizard (Anolis sagrei)

被引:0
|
作者
Rasys, Ashley M. [1 ]
Pau, Shana H. [2 ]
Irwin, Katherine E. [1 ]
Luo, Sherry [2 ]
Menke, Douglas B. [2 ]
Lauderdale, James D. [1 ,3 ]
机构
[1] Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA
[2] Univ Georgia, Dept Genet, Athens, GA 30602 USA
[3] Univ Georgia, Neurosci Div, Biomed & Hlth Sci Inst, Athens, GA USA
关键词
ciliary body; cornea; iris; lens; lizard; squamate; trabecular meshwork; NORMAL EMBRYONIC STAGES; DESCEMETS-MEMBRANE; SCLERAL OSSICLES; CONJUNCTIVAL PAPILLAE; PRENATAL DEVELOPMENT; ELECTRON-MICROSCOPY; CORNEAL DEVELOPMENT; OUTFLOW PATHWAY; AQUEOUS OUTFLOW; LENS;
D O I
10.1111/joa.14226
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
For all vertebrates, the anterior eye structures work together to protect and nourish the eye while ensuring that light entering the eye is correctly focused on the retina. However, the anterior eye structure can vary significantly among different vertebrates, reflecting how the structures of the anterior eye have evolved to meet the specific visual needs of different vertebrate species. Although conserved pathways regulate fundamental aspects of anterior eye development in vertebrates, there may also be species-specific differences underlying structural variation. Our knowledge of the cellular and molecular mechanisms underlying the development of structures of the anterior eye comes mainly from work in mammals, chicks, some amphibians, and small teleosts such as zebrafish. Our understanding of anterior eye development would benefit from comparative molecular studies in diverse vertebrates. A promising lizard model is the brown anole, Anolis sagrei, which is easily raised in the laboratory and for which genome editing techniques exist. Here, we provide a detailed histological analysis of the development of the anterior structures of the eye in A. sagrei, which include the cornea, iris, ciliary body, lens, trabecular meshwork, and scleral ossicles. The development of the anterior segment in anoles follows a pattern similar to other vertebrates. The lens forms first, followed by the cornea, iris, ciliary body, and tissues involved in the outflow of the aqueous humor. The development of the iris and ciliary body begins temporally and then proceeds nasally. Scleral ossicle development is generally comparable to that reported for chicks and turtles. Anoles have a remarkably thin cornea and a flat ciliary body compared to the eyes of mammals and birds. This study highlights several features in anoles and represents a deeper understanding of reptile eye development.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] The role of neuropeptide Y in the regulation of the stress response and food intake in the brown anole (Anolis sagrei).
    Castro, M. A.
    Elkhoury, L. D.
    Fokidis, H. B.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2018, 58 : E290 - E290
  • [22] Neural activity in catecholaminergic populations following sexual and aggressive interactions in the brown anole, Anolis sagrei
    Kabelik, David
    Alix, Veronica C.
    Singh, Leah J.
    Johnson, Alyssa L.
    Choudhury, Shelley C.
    Elbaum, Caroline C.
    Scott, Madeline R.
    BRAIN RESEARCH, 2014, 1553 : 41 - 58
  • [23] Sex-specific adult dispersal and its selective consequences in the brown anole, Anolis sagrei
    Calsbeek, Ryan
    JOURNAL OF ANIMAL ECOLOGY, 2009, 78 (03) : 617 - 624
  • [24] Manipulating Testosterone to Assess Links between Behavior, Morphology, and Performance in the Brown Anole Anolis sagrei
    Cox, Robert M.
    Stenquist, Derek S.
    Henningsen, Justin P.
    Calsbeek, Ryan
    PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY, 2009, 82 (06): : 686 - 698
  • [25] Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species
    Anthony J. Geneva
    Sungdae Park
    Dan G. Bock
    Pietro L. H. de Mello
    Fatih Sarigol
    Marc Tollis
    Colin M. Donihue
    R. Graham Reynolds
    Nathalie Feiner
    Ashley M. Rasys
    James D. Lauderdale
    Sergio G. Minchey
    Aaron J. Alcala
    Carlos R. Infante
    Jason J. Kolbe
    Dolph Schluter
    Douglas B. Menke
    Jonathan B. Losos
    Communications Biology, 5
  • [26] Fighting for food: Does food insecurity influence agonistic behavior in the brown anole (Anolis sagrei)?
    Elkhoury, L. D.
    Castro, M. A.
    Fokidis, H. B.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2018, 58 : E311 - E311
  • [27] The effects of thermal stress on the early development of the lizard Anolis sagrei
    Sanger, Thomas J.
    Kyrkos, Judith
    Lachance, Dryden J.
    Czesny, Beata
    Stroud, James T.
    JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY, 2018, 329 (4-5) : 244 - 251
  • [28] Communal egg-laying behaviour and the consequences of egg aggregation in the brown anole (Anolis sagrei)
    Dees, Allison
    Wilson, Kayla
    Reali, Chanel
    Pruett, Jenna E.
    Hall, Joshua M.
    Brandt, Renata
    Warner, Daniel A.
    ETHOLOGY, 2020, 126 (07) : 751 - 760
  • [29] Survival of the fattest? Indices of body condition do not predict viability in the brown anole (Anolis sagrei)
    Cox, Robert M.
    Calsbeek, Ryan
    FUNCTIONAL ECOLOGY, 2015, 29 (03) : 404 - 413
  • [30] Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species
    Geneva, Anthony J.
    Park, Sungdae
    Bock, Dan G.
    de Mello, Pietro L. H.
    Sarigol, Fatih
    Tollis, Marc
    Donihue, Colin M.
    Reynolds, R. Graham
    Feiner, Nathalie
    Rasys, Ashley M.
    Lauderdale, James D.
    Minchey, Sergio G.
    Alcala, Aaron J.
    Infante, Carlos R.
    Kolbe, Jason J.
    Schluter, Dolph
    Menke, Douglas B.
    Losos, Jonathan B.
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)