Predicting 48-month survival status in patients with uveal melanoma using deep learning

被引:0
|
作者
Kolchinski, Anna [1 ]
Chen, Haomin [1 ]
Unberath, Mathias [2 ]
Correa, Zelia Maria [3 ]
Liu, Alvin [1 ]
机构
[1] Johns Hopkins Med, Baltimore, MD USA
[2] Johns Hopkins Univ, Comp Sci, Baltimore, MD USA
[3] Univ Miami, Miller Sch Med, Miami, FL USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
2238
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Machine learning models demonstrate that clinicopathologic variables are comparable to gene expression prognostic signature in predicting survival in uveal melanoma
    Donizy, Piotr
    Krzyzinski, Mateusz
    Markiewicz, Anna
    Karpinski, Pawel
    Kotowski, Krzysztof
    Kowalik, Artur
    Orlowska-Heitzman, Jolanta
    Romanowska-Dixon, Bozena
    Biecek, Przemyslaw
    Hoang, Mai P.
    EUROPEAN JOURNAL OF CANCER, 2022, 174 : 251 - 260
  • [42] Exploring Color Fusion Effects on Deep Learning Classification of Uveal Melanoma
    Dadzie, Albert Kofi
    Iddir, Sabrina P.
    Abtahi, Mansour
    Ebrahimi, Behrouz
    Le, David
    Ganesh, Sanjay
    Son, Taeyoon
    Heiferman, Michael J.
    Yao, Xincheng
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (09)
  • [43] Community treatment orders and social outcomes for patients with psychosis: a 48-month follow-up study
    Francis Vergunst
    Jorun Rugkåsa
    Constantinos Koshiaris
    Judit Simon
    Tom Burns
    Social Psychiatry and Psychiatric Epidemiology, 2017, 52 : 1375 - 1384
  • [44] AlphaMissense Predictions and ClinVar Annotations: A Deep Learning Approach to Uveal Melanoma
    Gonzalez, David J. Taylor
    Djulbegovic, Mak B.
    Sharma, Meghan
    Antonietti, Michael
    Kim, Colin K.
    Uversky, Vladimir N.
    Karp, Carol L.
    Shields, Carol L.
    Wilson, Matthew W.
    OPHTHALMOLOGY SCIENCE, 2025, 5 (03):
  • [45] Predicting Survival Time of Localized Melanoma Patients Using Discrete Survival Time Method
    Sharaf, Taysseer
    Tsokos, Chris P.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (01) : 140 - 156
  • [46] A MULTIMODAL DEEP LEARNING MODEL FOR PREDICTING OVERALL SURVIVAL IN GLIOBLASTOMA PATIENTS
    Faghani, Shahriar
    Moassefi, Mana
    Conte, Gian Marco
    Erickson, Bradley
    NEURO-ONCOLOGY, 2022, 24 : 174 - 174
  • [47] Deep learning model for predicting postoperative survival of patients with gastric cancer
    Zeng, Junjie
    Song, Dan
    Li, Kai
    Cao, Fengyu
    Zheng, Yongbin
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [48] Socioeconomic status and survival in patients with melanoma
    Sitenga, Jenna
    Aird, Gregory
    Ahmed, Aabra
    Silberstein, Peter
    Walters, Ryan
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2018, 79 (03) : AB265 - AB265
  • [49] Predicting Lung Cancer Survival Time Using Deep Learning Techniques
    Baker, Qanita Bani
    Gharaibeh, Maram
    Al-Harahsheh, Yara
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 177 - 181
  • [50] Community treatment orders and social outcomes for patients with psychosis: a 48-month follow-up study
    Vergunst, Francis
    Rugkasa, Jorun
    Koshiaris, Constantinos
    Simon, Judit
    Burns, Tom
    SOCIAL PSYCHIATRY AND PSYCHIATRIC EPIDEMIOLOGY, 2017, 52 (11) : 1375 - 1384