Predicting 48-month survival status in patients with uveal melanoma using deep learning

被引:0
|
作者
Kolchinski, Anna [1 ]
Chen, Haomin [1 ]
Unberath, Mathias [2 ]
Correa, Zelia Maria [3 ]
Liu, Alvin [1 ]
机构
[1] Johns Hopkins Med, Baltimore, MD USA
[2] Johns Hopkins Univ, Comp Sci, Baltimore, MD USA
[3] Univ Miami, Miller Sch Med, Miami, FL USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
2238
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Direct Prediction of 48 Month Survival Status in Patients with Uveal Melanoma Using Deep Learning and Digital Cytopathology Images
    Liu, T. Y. Alvin
    Chen, Haomin
    Koseoglu, Neslihan Dilruba
    Kolchinski, Anna
    Unberath, Mathias
    Correa, Zelia M.
    CANCERS, 2025, 17 (02)
  • [2] PREDICTING SURVIVAL OF UVEAL MELANOMA PATIENTS
    GAMEL, JW
    OPHTHALMOLOGY, 1989, 96 (04) : 570 - 570
  • [3] The Influence of Marital Status on the Survival of Patients with Uveal Melanoma
    Cai, Wenting
    Fan, Jiaqi
    Shen, Tianyi
    Yu, Jing
    JOURNAL OF OPHTHALMOLOGY, 2020, 2020
  • [4] Predicting cutaneous malignant melanoma patients’ survival using deep learning: a retrospective cohort study
    Siyu Cai
    Wei Li
    Cong Deng
    Qiao Tang
    Zhou Zhou
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 17103 - 17113
  • [5] Predicting cutaneous malignant melanoma patients' survival using deep learning: a retrospective cohort study
    Cai, Siyu
    Li, Wei
    Deng, Cong
    Tang, Qiao
    Zhou, Zhou
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (19) : 17103 - 17113
  • [6] The influence of dft index on sealant success: A 48-month survival analysis
    Bravo, M
    Osorio, E
    GarciaAnllo, I
    Llodra, JC
    Baca, P
    JOURNAL OF DENTAL RESEARCH, 1996, 75 (02) : 768 - 774
  • [7] Imatinib improves survival of CML patients in accelerated phase: A 48-month follow-up
    Todaro, Juliana
    Ferreira, Euripides
    Hamerschlak, Nelson
    Simon, Sergio Daniel
    Kutner, Jose Mauro
    Pietrocola, Marci
    Borovik, Cleide Largman
    EINSTEIN-SAO PAULO, 2006, 4 (01): : 16 - 21
  • [8] Identification of Prognostic Signatures for Predicting the Overall Survival of Uveal Melanoma Patients
    Xue, Meijuan
    Shang, Jun
    Chen, Binglin
    Yang, Zuyi
    Song, Qian
    Sun, Xiaoyan
    Chen, Jianing
    Yang, Ji
    JOURNAL OF CANCER, 2019, 10 (20): : 4921 - 4931
  • [9] Validation of the Liverpool Uveal Melanoma Prognosticator Online for predicting survival of patients with choroidal melanoma
    DeParis, Sarah Willcox
    Damato, Bertil E.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [10] Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period
    Guan, B.
    Liu, F.
    Haj-Mirzaian, A.
    Demehri, S.
    Samsonov, A.
    Neogi, T.
    Guermazi, A.
    Kijowski, R.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) : 428 - 437