A Divide-and-Conquer Strategy for Cross-Domain Few-Shot Learning

被引:0
|
作者
Wang, Bingxin [1 ]
Yu, Dehong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
来源
ELECTRONICS | 2025年 / 14卷 / 03期
基金
中国国家自然科学基金;
关键词
cross-domain few-shot learning; domain metric; divide-and-conquer strategy; whitened PCA;
D O I
10.3390/electronics14030418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-Domain Few-Shot Learning (CD-FSL) aims to empower machines with the capability to rapidly acquire new concepts across domains using an extremely limited number of training samples from the target domain. This ability hinges on the model's capacity to extract and transfer generalizable knowledge from a source training set. Studies have indicated that the similarity between source and target-data distributions, as well as the difficulty of target tasks, determine the classification performance of the model. However, the current lack of quantitative metrics hampers researchers' ability to devise appropriate learning strategies, leading to a fragmented understanding of the field. To address this issue, we propose quantitative metrics of domain distance and target difficulty, which allow us to categorize target tasks into three regions on a two-dimensional plane: near-domain tasks, far-domain low-difficulty tasks, and far-domain high-difficulty tasks. For datasets in different regions, we propose a Divide-and-Conquer Strategy (DCS) to tackle few-shot classification across various target datasets. Empirical results across 15 target datasets demonstrate the compatibility and effectiveness of our approach, improving the model performance. We conclude that the proposed metrics are reliable and the Divide-and-Conquer Strategy is effective, offering valuable insights and serving as a reference for future research on CD-FSL.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Li, Zhaokui
    Liu, Ming
    Chen, Yushi
    Xu, Yimin
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot Classification
    Heidari, Marzi
    Alchihabi, Abdullah
    En, Qing
    Guo, Yuhong
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [33] Hyperbolic Insights With Knowledge Distillation for Cross-Domain Few-Shot Learning
    Yang, Xi
    Kong, Dechen
    Wang, Nannan
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1921 - 1933
  • [34] Cross-domain few-shot learning via adaptive transformer networks
    Paeedeh, Naeem
    Pratama, Mahardhika
    Ma'sum, Muhammad Anwar
    Mayer, Wolfgang
    Cao, Zehong
    Kowlczyk, Ryszard
    Knowledge-Based Systems, 2024, 288
  • [35] DOMAIN-AGNOSTIC META-LEARNING FOR CROSS-DOMAIN FEW-SHOT CLASSIFICATION
    Lee, Wei-Yu
    Wang, Jheng-Yu
    Wang, Yu-Chiang Frank
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1715 - 1719
  • [36] Cross-Domain Few-Shot Relation Extraction via Representation Learning and Domain Adaptation
    Yuan, Zhongju
    Wang, Zhenkun
    Li, Genghui
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] TGDM: Target Guided Dynamic Mixup for Cross-Domain Few-Shot Learning
    Zhuo, Linhai
    Fu, Yuqian
    Chen, Jingjing
    Cao, Yixin
    Jiang, Yu-Gang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6368 - 6376
  • [38] Gradient-guided channel masking for cross-domain few-shot learning
    Hui, Siqi
    Zhou, Sanping
    Deng, Ye
    Wu, Yang
    Wang, Jinjun
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [39] StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning
    Fu, Yuqian
    Xie, Yu
    Fu, Yanwei
    Jiang, Yu-Gang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24575 - 24584
  • [40] An Adversarial Meta-Training Framework for Cross-Domain Few-Shot Learning
    Tian, Pinzhuo
    Xie, Shaorong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6881 - 6891