Algebraic method for multisensor data fusion

被引:0
|
作者
Chen, Xiangbing [1 ,2 ]
Chen, Chen [3 ]
Lu, Xiaowen [1 ]
机构
[1] Kashi Univ, Sch Math & Stat, Kashi, Xinjiang, Peoples R China
[2] Sichuan Univ, Div Math, Jinjiang Coll, Meishan, Sichuan, Peoples R China
[3] Civil Aviat Flight Univ China, Sch Sci, Guanghan, Sichuan, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
中国国家自然科学基金;
关键词
STATE ESTIMATION; DISTANCE; ALGORITHM; GEOMETRY; SYSTEMS; BOUNDS;
D O I
10.1371/journal.pone.0307587
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this contribution, we use Gaussian posterior probability densities to characterize local estimates from distributed sensors, and assume that they all belong to the Riemannian manifold of Gaussian distributions. Our starting point is to introduce a proper Lie algebraic structure for the Gaussian submanifold with a fixed mean vector, and then the average dissimilarity between the fused density and local posterior densities can be measured by the norm of a Lie algebraic vector. Under Gaussian assumptions, a geodesic projection based algebraic fusion method is proposed to achieve the fused density by taking the norm as the loss. It provides a robust fixed point iterative algorithm for the mean fusion with theoretical convergence, and gives an analytical form for the fused covariance matrix. The effectiveness of the proposed fusion method is illustrated by numerical examples.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Study on multisensor asynchronous data fusion
    Teng, Ke-Nan
    Dong, Yun-Long
    Sheng, An-Dong
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2010, 32 (02): : 221 - 225
  • [42] Multisensor data fusion in dimensional metrology
    Weckenmann, A.
    Jiang, X.
    Sommer, K. -D.
    Neuschaefer-Rube, U.
    Seewig, J.
    Shaw, L.
    Estler, T.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2009, 58 (02) : 701 - 721
  • [43] Multisensor data fusion for fire detection
    Zervas, E.
    Mpimpoudis, A.
    Anagnostopoulos, C.
    Sekkas, O.
    Hadjiefthymiades, S.
    INFORMATION FUSION, 2011, 12 (03) : 150 - 159
  • [44] Properties for hierarchical fusion of multisensor data
    Beijing Univ of Aeronautics and, Astronautics, Beijing, China
    Tien Tzu Hsueh Pao, 6 (55-61):
  • [45] A data fusion algorithm for multisensor systems
    Vershinin, YA
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, 2002, : 341 - 345
  • [46] Combining classifiers for multisensor data fusion
    Parikh, D
    Kim, MT
    Oagaro, J
    Mandayam, S
    Polikar, R
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 1232 - 1237
  • [47] Robust detection in multisensor data fusion
    Su, Huimin
    Zhang, Minglian
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 25 (02): : 156 - 159
  • [48] Consistency check for multisensor data fusion
    Wang, Jiangping
    Shen, Lixiang
    Shen, Yudi
    Shiyou Jixie/China Petroleum Machinery, 25 (11): : 25 - 28
  • [49] Filterbanks design for multisensor data fusion
    Argenti, F
    Alparone, L
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (05) : 100 - 103
  • [50] Multisensor data fusion architectures for NCO
    Opitz, Felix
    2008 EUROPEAN RADAR CONFERENCE, 2008, : 300 - 303