Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization

被引:142
|
作者
Ji, Ruyi [1 ,2 ]
Wen, Longyin [3 ]
Zhang, Libo [1 ]
Du, Dawei [4 ]
Wu, Yanjun [1 ]
Zhao, Chen [1 ]
Liu, Xianglong [5 ]
Huang, Feiyue [6 ]
机构
[1] ISCAS, State Key Lab Comp Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] JD Finance Amer Corp, Mountain View, CA USA
[4] SUNY Albany, Albany, NY 12222 USA
[5] Beihang Univ, Beijing, Peoples R China
[6] Tencent Youtu Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.01048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. Several experiments on the CUB200-2011, Stanford Cars and Aircraft datasets demonstrate that our method performs favorably against the state-of-the-arts. Code can be found at https://isrc.iscas.ac.cn/gitlab/research/acnet.
引用
收藏
页码:10465 / 10474
页数:10
相关论文
共 50 条
  • [41] A survey of fine-grained visual categorization based on deep learning
    XIE Yuxiang
    GONG Quanzhi
    LUAN Xidao
    YAN Jie
    ZHANG Jiahui
    Journal of Systems Engineering and Electronics, 2024, 35 (06) : 1337 - 1356
  • [42] A Survey of Fine-Grained Visual Categorization Based on Deep Learning
    Xie, Yuxiang
    Gong, Quanzhi
    Luan, Xidao
    Yan, Jie
    Zhang, Jiahui
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2024, 35 (06) : 1337 - 1356
  • [43] Multiresolution Discriminative Mixup Network for Fine-Grained Visual Categorization
    Xu, Kunran
    Lai, Rui
    Gu, Lin
    Li, Yishi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3488 - 3500
  • [44] SHAPE-GUIDED SEGMENTATION FOR FINE-GRAINED VISUAL CATEGORIZATION
    Sun, Ming
    Yang, Jufeng
    Sun, Bo
    Wang, Kai
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [45] Refined probability distribution module for fine-grained visual categorization
    Zhao, Peipei
    Miao, Qiguang
    Li, Hongsheng
    Liu, Ruyi
    Quan, Yining
    Song, Jianfeng
    NEUROCOMPUTING, 2023, 518 : 533 - 544
  • [46] Part-Stacked CNN for Fine-Grained Visual Categorization
    Huang, Shaoli
    Xu, Zhe
    Tao, Dacheng
    Zhang, Ya
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1173 - 1182
  • [47] A Deep Sparse Coding Method for Fine-Grained Visual Categorization
    Guo, Lihua
    Guo, Chenggang
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 632 - 639
  • [48] Orientational Spatial Part Modeling for Fine-Grained Visual Categorization
    Yao, Hantao
    Zhang, Shiliang
    Xie, Fei
    Zhang, Yongdong
    Zhang, Dongming
    Su, Yu
    Tian, Qi
    2015 IEEE THIRD INTERNATIONAL CONFERENCE ON MOBILE SERVICES MS 2015, 2015, : 360 - 367
  • [49] Universal Fine-Grained Visual Categorization by Concept Guided Learning
    Bi, Qi
    Zhou, Beichen
    Ji, Wei
    Xia, Gui-Song
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 394 - 409
  • [50] Attentional Kernel Encoding Networks for Fine-Grained Visual Categorization
    Hu, Yutao
    Yang, Yandan
    Zhang, Jun
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) : 301 - 314