Low-rank regularization in two-sided matrix regression

被引:0
|
作者
Bettache, Nayel [1 ]
Butucea, Cristina [1 ]
机构
[1] Inst Polytech Paris, ENSAE, CREST, 5 Ave Henry Chatelier, F-9112 Palaiseau, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2025年 / 19卷 / 01期
关键词
Matrix regression; multivariate response regres- sion; nuclear norm penalized; oracle inequality; rank penalized; rank selec- tion; two-sided matrix regression; and phrases; ESTIMATORS; LASSO; RATES;
D O I
10.1214/25-EJS2360
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The two-sided matrix regression model Y = A & lowast;XB & lowast; + E aims at predicting Y by taking into account both linear links between column features of X, via the unknown matrix B & lowast;, and also among the row features of X, via the matrix A & lowast;. We propose low-rank predictors in this high-dimensional matrix regression model via rank-penalized and nuclear norm-penalized least squares. Both criteria are non jointly convex; however, we propose explicit predictors based on SVD and show optimal prediction bounds. We give sufficient conditions for consistent rank selector. We also propose a fully data-driven rank-adaptive procedure. Simulation results confirm the good prediction and the rank-consistency results under data-driven explicit choices of the tuning parameters and the scaling parameter of the noise.
引用
收藏
页码:1174 / 1198
页数:25
相关论文
共 50 条
  • [41] Efficient Image Classification via Structured Low-Rank Matrix Factorization Regression
    Zhang, Hengmin
    Yang, Jian
    Qian, Jianjun
    Gao, Guangwei
    Lan, Xiangyuan
    Zha, Zhiyuan
    Wen, Bihan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1496 - 1509
  • [42] A two-phase rank-based algorithm for low-rank matrix completion
    Araujo, Tacildo de S.
    Goncalves, Douglas S.
    Torezzan, Cristiano
    OPTIMIZATION LETTERS, 2023, 17 (07) : 1679 - 1695
  • [43] A two-phase rank-based algorithm for low-rank matrix completion
    Tacildo de S. Araújo
    Douglas S. Gonçalves
    Cristiano Torezzan
    Optimization Letters, 2023, 17 : 1679 - 1695
  • [44] A Converse to Low-Rank Matrix Completion
    Pimentel-Alarcon, Daniel L.
    Nowak, Robert D.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 96 - 100
  • [45] Enhanced Low-Rank Matrix Approximation
    Parekh, Ankit
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 493 - 497
  • [46] Low-rank representation with graph regularization for subspace clustering
    He, Wu
    Chen, Jim X.
    Zhang, Weihua
    SOFT COMPUTING, 2017, 21 (06) : 1569 - 1581
  • [47] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [48] Sensitivity of low-rank matrix recovery
    Breiding, Paul
    Vannieuwenhoven, Nick
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 725 - 759
  • [49] DECENTRALIZED LOW-RANK MATRIX COMPLETION
    Ling, Qing
    Xu, Yangyang
    Yin, Wotao
    Wen, Zaiwen
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2925 - 2928
  • [50] Sensitivity of low-rank matrix recovery
    Paul Breiding
    Nick Vannieuwenhoven
    Numerische Mathematik, 2022, 152 : 725 - 759