Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes

被引:0
|
作者
Li, Haoming [1 ]
Wang, Keyong [1 ]
Yan, Xiangjin [2 ]
Zhao, Qingying [1 ]
Sun, Lixue [1 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Jilin, Peoples R China
[2] Mudanjiang Ctr Nat Resources Comprehens Survey, CGS, Mudanjiang 157000, Peoples R China
关键词
Central Asian Orogenic Belt; central Jilin; Batailing Au deposit; fluid inclusion; H-O-C-S-Pb isotopes; ZIRCON U-PB; AQUEOUS SULFIDE SOLUTIONS; JIAPIGOU GOLD BELT; NE CHINA; METALLOGENIC MECHANISM; STABLE-ISOTOPE; GEOCHRONOLOGY; EVOLUTION; OXYGEN; ORIGIN;
D O I
10.3390/min14101028
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Batailing Au deposit is a vein-type deposit in central Jilin Province, situated in the southern sector of the Lesser Xing'an-Zhangguangcai Range within the eastern Central Asian Orogenic Belt. NE-trending fault-controlled orebodies occur in the Upper Permian Yangjiagou Formation and quartz diorite-porphyrite. The mineralisation process was delineated into three stages: (I) quartz-arsenopyrite-pyrite, (II) quartz-polymetallic sulphides (main Au mineralisation stage), and (III) quartz-pyrite-carbonate. Fluid inclusions (FIs) in quartz were identified as four types: PC-type (pure CO2), C1-type (CO2-bearing), C2-type (CO2-rich), and W-type (aqueous two-phase). Raman spectroscopy analysis revealed that the vapor components of the FIs predominantly comprised CO2 with minor quantities of CH4 in stages I-II. Stages I and II encompassed four types of FIs with homogenisation temperature ranging from 264 to 332 degrees C and 213 to 292 degrees C and salinity spanning from 4.7 to 11.2 wt% and 1.8 to 11.6 wt%, respectively. Stage III exclusively contained W-type FIs with homogenisation temperature ranging from 152 to 215 degrees C and salinity spanning from 1.4 to 6.4 wt%. H-O isotopic values (delta D = -84 to -79.6 parts per thousand, delta 18OH2O = 6.2 to 6.4 parts per thousand in stage I and delta D = -96.4 to -90.4 parts per thousand, delta 18OH2O = 2.8 to 4.4 parts per thousand in stage II) and microthermometric data indicated that the ore-forming fluids are initially from a magmatic source, with later meteoric water input. Low C isotopic data from CO2 in FIs in quartz (-24.4 to -24.3 parts per thousand in stage I and -23.7 to -22.6 parts per thousand in stage II) indicated an organic carbon source. Ore precipitation is mainly attributable to fluid immiscibility. S-Pb isotopic data (delta 34S = -3.5 to -1.6 parts per thousand; 206Pb/204Pb = 18.325-18.362, 207Pb/204Pb = 15.523-5.562, 208Pb/204Pb = 38.064-38.221) revealed that ore metals primarily originated from magma. Based on this research, the origin of the Batailing Au deposit is of the mesothermal magmatic-hydrothermal lode type.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Ore Genesis of the Toudaochuan Gold Deposit in Central Jilin Province, NE China: Constraints from Fluid Inclusions and C-H-O-S-Pb Isotopes
    Li, Jingmou
    Ren, Yunsheng
    Yang, Qun
    Sun, Xinhao
    MINERALS, 2022, 12 (08)
  • [2] Ore Genesis of the Kuergasheng Pb-Zn Deposit, Xinjiang Province, Northwest China: Constraints from Geology, Fluid Inclusions, and H-O-C-S-Pb Isotopes
    Li, Shunda
    Chen, Chuan
    Gao, Lingling
    Xia, Fang
    Zhang, Xuebing
    Wang, Keyong
    Arkin, Kurbanjan
    MINERALS, 2020, 10 (07) : 1 - 19
  • [3] Origin of ore-forming fluids in Qinggouzi stibnite deposit,NE China:Constraints from fluid inclusions and H-O-S isotopes
    BAKHT Shahzad
    SUN Fengyue
    WANG Linlin
    XU Chenghan
    YE Lina
    ZHU Xinran
    FAN Xingzhu
    GlobalGeology, 2021, 24 (02) : 80 - 88
  • [4] Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes
    Sun, Xinhao
    Ren, Yunsheng
    Cao, Peng
    Hao, Yujie
    Gao, Yu
    MINERALS, 2019, 9 (10)
  • [5] Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics
    Yu, Qi
    Wang, Keyong
    Zhang, Xuebing
    Sun, Qingfei
    Bai, Wenqiang
    Ma, Chao
    Xiao, Yongchun
    MINERALS, 2023, 13 (05)
  • [6] Nature, source, and evolution of the ore-forming fluids in the Dunbasitao gold deposit, East Junggar, China: Constraints from geology, fluid inclusions, and C-H-O isotopes
    Liu, Wenxiang
    Deng, Xiaohua
    Pirajno, Franco
    Han, Shen
    Chen, Xi
    Li, Xun
    Aibai, Abulimiti
    Wu, Yanshuang
    Wang, Yong
    Chen, Yanjing
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2024, 258
  • [7] Nature, source, and evolution of the ore-forming fluids in the Dunbasitao gold deposit, East Junggar, China: Constraints from geology, fluid inclusions, and C-H-O isotopes
    Liu, Wenxiang
    Deng, Xiaohua
    Pirajno, Franco
    Han, Shen
    Chen, Xi
    Li, Xun
    Aibai, Abulimiti
    Wu, Yanshuang
    Wang, Yong
    Chen, Yanjing
    Journal of Geochemical Exploration, 2024, 258
  • [8] Origin and evolution of ore-forming fluids in the Yamansu deposit, Eastern Tianshan, NW China: Constraints from geology, fluid inclusions and H-O-C-S isotopes
    Sun, ZhiYuan
    Wang, JingBin
    Wang, YuWang
    Long, LingLi
    ORE GEOLOGY REVIEWS, 2020, 124
  • [9] Insights into the Ore Genesis of the Harla Gold Deposit in Eastern Tianshan, NW China: Evidence from Geology, Fluid Inclusions, and H-O-C-S-Pb Isotopes
    Chen, Chuan
    Li, Shunda
    Xia, Fang
    Gao, Lingling
    Zhang, Xuebing
    MINERALS, 2022, 12 (07)
  • [10] Fluid Inclusions and H-O-C-S-Pb Isotopic Systematics of the Jinba Gold Deposit, NW China: Implications for Ore Genesis
    Li, Shun-Da
    Chen, Chuan
    Gao, Ling-Ling
    Xia, Fang
    Zhang, Xue-Bing
    Wang, Ke-Yong
    FRONTIERS IN EARTH SCIENCE, 2021, 9