Oscillatory behavior of Ψ-Hilfer generalized proportional fractional initial value problems

被引:0
|
作者
Viji, James [1 ]
Muthulakshmi, Velu [1 ]
Kumar, Pushpendra [2 ,3 ]
机构
[1] Periyar Univ, Dept Math, Salem, Tamilnadu, India
[2] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin, Turkiye
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
关键词
nonoscillatory solution; oscillation criteria; Psi-Hilfer generalized proportional fractional derivative; DIFFERENTIAL-EQUATIONS; DERIVATIVES;
D O I
10.1002/mma.10557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the oscillatory behavior of the Psi-Hilfer generalized proportional fractional initial value problem. Using the Volterra integral equation and Young's inequality, we establish sufficient conditions for each solution of the problem to oscillate. For the appropriate choice of the kernel Psi$$ \Psi $$, our obtained results generalize and recover some existing results in the literature. Additionally, we present some examples to emphasize the importance of our results.
引用
收藏
页码:4460 / 4476
页数:17
相关论文
共 50 条
  • [31] Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations
    Salim, Abdelkrim
    Benchohra, Mouffak
    Graef, John R.
    Lazreg, Jamal Eddine
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (01)
  • [32] BOUNDARY VALUE PROBLEM FOR HYBRID GENERALIZED HILFER FRACTIONAL DIFFERENTIAL EQUATIONS
    Salim, Abdelkrim
    Ahmad, Bashir
    Benchohra, Mouffak
    Lazreg, Jamal Eddine
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (03): : 379 - 391
  • [33] Initial Value Problems with Generalized Fractional Derivatives and Their Solutions via Generalized Laplace Decomposition Method
    Elbadri, Mohamed
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [34] Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative
    Ahmed, Idris
    Kumam, Poom
    Jarad, Fahd
    Borisut, Piyachat
    Sitthithakerngkiet, Kanokwan
    Ibrahim, Alhassan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [35] Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems
    Baleanu, D.
    Bhrawy, A. H.
    Taha, T. M.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [36] RETRACTED ARTICLE: Existence of solutions of nonlocal initial value problems for differential equations with Hilfer–Katugampola fractional derivative
    S. Harikrishnan
    K. Kanagarajan
    E. M. Elsayed
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3903 - 3903
  • [37] ASYMPTOTIC SOLUTIONS OF OSCILLATORY INITIAL VALUE PROBLEMS
    LAX, PD
    DUKE MATHEMATICAL JOURNAL, 1957, 24 (04) : 627 - 646
  • [38] POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING THE GENERALIZED PROPORTIONAL DERIVATIVES
    Abbas, M., I
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (01): : 39 - 51
  • [39] Fractional periodic boundary value and Cauchy problems with Hilfer–Prabhakar operator
    Kateryna Marynets
    Živorad Tomovski
    Computational and Applied Mathematics, 2024, 43
  • [40] New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators
    Zhou, Shuang-Shuang
    Rashid, Saima
    Parveen, Saima
    Akdemir, Ahmet Ocak
    Hammouch, Zakia
    AIMS MATHEMATICS, 2021, 6 (05): : 4507 - 4525