Coupled large deformation phase-field and cohesive zone model for crack propagation in hard-soft multi-materials

被引:0
|
作者
Najmeddine, Aimane [1 ]
Gupta, Shashank [1 ]
Moini, Reza [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
Phase-field; Cohesive zone model; Large deformation; LEFM theory; Fracture; Finite-element; BRITTLE-FRACTURE; FINITE-ELEMENTS; PART I; INTERFACE; DEFLECTION; DAMAGE; FORMULATION; PLASTICITY; MECHANICS; TOUGHNESS;
D O I
10.1016/j.jmps.2024.106016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a unified large deformation constitutive framework that couples the phase- field approach for bulk fracture with the potential-based Park-Paulino-Roesler cohesive zone model (PPR CZM) to study crack propagation in multi-material systems that contain interfaces. The phase-field component captures crack initiation and propagation within bulk constituents, whereas the PPR CZM captures failure mechanisms at the interface regions. The proposed unified framework is implemented via a user-element subroutine (UEL) within Abaqus and incorporates a large-deformation extension of the PPR CZM. The proposed coupled framework was used to examine fracture mechanisms in four scenarios: bi-layer hard-hard composite containing crack (notch) impinging on (1) a perpendicular interface and (2) an oblique interface, (3) tri-layer hard-soft multi-material composite containing crack perpendicular to interfaces, and (4) fiber-reinforced matrix composite with an interface and no notch. Results demonstrated that the unified framework successfully captured crack deflection and penetration in hard-hard bi-layers with dissimilar properties and both perpendicular and oblique interfaces, consistent with the expected response based on Linear Elastic Fracture Mechanics theroy. Furthermore, the large-deformation component of the framework was shown to provide an effective numerical tool for probing the underlying toughening mechanisms in hard-soft multi-material assemblies relative to their monolithic counterparts. Toughening in these composites was characterized by crack bridging and post-peak hardening in the force-displacement response. Finally, the framework accurately predicted complex fracture phenomena in fiber-reinforced composites, involving fiber-matrix debonding (via PPR CZM) and matrix cracking (via phase-field). The framework can inform the design of dissimilar hard-hard brittle materials and hard-soft composites, offering insights into fracture behavior and toughening mechanisms.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Phase-Field Model for the Simulation of Brittle-Anisotropic and Ductile Crack Propagation in Composite Materials
    Herrmann, Christoph
    Schneider, Daniel
    Schoof, Ephraim
    Schwab, Felix
    Nestler, Britta
    MATERIALS, 2021, 14 (17)
  • [22] A modification of the phase-field model for mixed mode crack propagation in rock-like materials
    Zhang, Xue
    Sloan, Scott W.
    Vignes, Chet
    Sheng, Daichao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 322 : 123 - 136
  • [23] Crack propagation in anisotropic brittle materials: From a phase-field model to a shape optimization approach
    Suchan, Tim
    Kandekar, Chaitanya
    Weber, Wolfgang E.
    Welker, Kathrin
    ENGINEERING FRACTURE MECHANICS, 2024, 303
  • [24] A generalized phase-field cohesive zone model (μ PF-CZM) for fracture
    Wu, Jian-Ying
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2024, 192
  • [25] Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model
    Vinh Phu Nguyen
    Wu, Jian-Ying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 1000 - 1022
  • [26] Phase-field regularized cohesive zone model (CZM) and size effect of concrete
    Feng, De-Cheng
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2018, 197 : 66 - 79
  • [27] Crack propagation of a thin hard coating under cyclic loading: Irreversible cohesive zone model
    Feng, J.
    Qin, Y.
    Liskiewicz, T. W.
    Beake, B. D.
    Wang, S.
    SURFACE & COATINGS TECHNOLOGY, 2021, 426
  • [28] A phase-field regularized cohesive zone model for quasi-brittle materials with spatially varying fracture properties
    Li, Hui
    Yang, Zhen-jun
    Li, Bei-bei
    Wu, Jian-ying
    ENGINEERING FRACTURE MECHANICS, 2021, 256
  • [29] Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase-field model
    Li, G.
    Yin, B. B.
    Zhang, L. W.
    Liew, K. M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 142
  • [30] Investigation of crack propagation in plain concrete using Phase-field model
    Lateef, Hanadi Abdulridha
    Laftah, Rafil Mahmood
    Jasim, Nabeel Abdulrazzaq
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 375 - 382