Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [Glycine max (L.) Merr.]

被引:0
|
作者
You, Hee Jin [1 ]
Zhao, Ruihua [1 ]
Choi, Yu-Mi [2 ]
Kang, In-Jeong [3 ]
Lee, Sungwoo [1 ]
机构
[1] Chungnam Natl Univ, Coll Agr & Life Sci, Dept Crop Sci, Daejeon 34134, South Korea
[2] Natl Inst Agr Sci, Rural Dev Adm, Natl Agrobiodivers Ctr, Jeonju 54874, South Korea
[3] Natl Inst Crop Sci, Dept Cent Area Crop Sci, Div Crop Cultivat & Environm Res, Suwon 16613, South Korea
来源
PLANTS-BASEL | 2024年 / 13卷 / 24期
关键词
soybean; genome-wide association study (GWAS); resistance to <italic>Phytophthora sojae</italic>; linkage disequilibrium (LD) block; haplotype; multi-locus model; GENES CONFERRING RESISTANCE; EMPIRICAL BAYES; ROOT-ROT; GERMPLASM; LOCI; IDENTIFICATION; INTEGRATION; COLLECTION; DIVERSITY; PATHOGEN;
D O I
10.3390/plants13243501
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8-5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker-trait associations and provide valuable insights into soybean genetics and breeding.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability
    Cotrim, Gustavo dos Santos
    da Silva, Deivid Metzker
    da Graca, Jose Perez
    de Oliveira Junior, Adilson
    de Castro, Cesar
    Zocolo, Guilherme Juliao
    Lannes, Luciola Santos
    Hoffmann-Campo, Clara Beatriz
    PHYTOCHEMISTRY, 2023, 205
  • [42] Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties
    Koh, Kwangoh
    Youn, Jung Eun
    Kim, Hee-Seon
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2014, 51 (02): : 377 - 381
  • [43] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Charlson, Dirk V.
    Bhatnagar, Sandeep
    King, C. Andy
    Ray, Jeffery D.
    Sneller, Clay H.
    Carter, Thomas E., Jr.
    Purcell, Larry C.
    THEORETICAL AND APPLIED GENETICS, 2009, 119 (04) : 587 - 594
  • [44] Development of Haploid Embryos from Soybean (Glycine max (L.) Merr.)
    Sharma, Deepshikha
    Ramlal, Ayyagari
    Lal, Sanjay Kumar
    Raju, Dhandapani
    Saini, Manisha
    Talukdar, Akshay
    Mallikarjun, Bingi Pujari
    Subramaniam, Sreeramanan
    Rajendran, Ambika
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S155 - S155
  • [45] Effect of seed coating on the yield of soybean Glycine max (L.) Merr.
    Jarecki, Waclaw
    Wietecha, Justyna
    PLANT SOIL AND ENVIRONMENT, 2021, 67 (08) : 468 - 473
  • [46] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Dirk V. Charlson
    Sandeep Bhatnagar
    C. Andy King
    Jeffery D. Ray
    Clay H. Sneller
    Thomas E. Carter
    Larry C. Purcell
    Theoretical and Applied Genetics, 2009, 119 : 587 - 594
  • [47] Sequence level analysis of recently duplicated regions in soybean [Glycine max (L.) merr.] genome
    Van, Kyujung
    Kim, Dong Hyun
    Cai, Chun Mei
    Kim, Moon Young
    Shin, Jin Hee
    Graham, Michelle A.
    Shoemaker, Randy C.
    Choi, Beom-Soon
    Yang, Tae-Jin
    Lee, Suk-Ha
    DNA RESEARCH, 2008, 15 (02) : 93 - 102
  • [48] Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
    Xiao, Gongnian
    Gong, Jinyan
    Ge, Qing
    You, Yuru
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2015, 11 (01) : 151 - 155
  • [49] Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]
    Zhang, Dan
    Chang, Enjie
    Yu, Xiaoxia
    Chen, Yonghuan
    Yang, Qinshuai
    Cao, Yanting
    Li, Xiukun
    Wang, Yuhua
    Fu, Aigen
    Xu, Min
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [50] Endophytic fungi of soybean (Glycine max (L.) Merr.) and their potential applications
    Abdelmagid, Ahmed
    Hou, Anfu
    Wijekoon, Champa
    CANADIAN JOURNAL OF PLANT SCIENCE, 2024, 104 (01) : 32 - 40