Classification of Patients With Idiopathic Pulmonary Fibrosis According to Blood Biomarker Signatures by Consensus Cluster Analysis: A Multiple Machine Learning Approach

被引:0
|
作者
Fainberg, H. [1 ]
Moodley, Y. P. [2 ]
Triguero, I. [3 ]
Corte, T. [4 ]
Sand, J. M. [5 ]
Leeming, D. J. [6 ]
Karsdal, M. [7 ]
Renzoni, E.
Wells, A. U. [8 ]
Fahy, W. [9 ]
Oballa, E. [9 ]
Porte, J. [10 ,11 ]
Saini, G. [12 ,13 ]
Johnson, S. [13 ]
Wain, L. [14 ]
Molyneaux, P. L. [15 ]
Maher, T. [1 ]
Stewart, I. [1 ]
Jenkins, G. [1 ]
机构
[1] Imperial Coll London, NHLI, London, England
[2] Univ Western Australia, Sch Med Pharmacol, Perth, Australia
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[4] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia
[5] Nord Biosci, Pulm Res, Herlev, Denmark
[6] Nord Biosci, Fibrosis Hepat & Pulm Res, Herlev, Denmark
[7] Nord Biosci, Herlev, Denmark
[8] Royal Brompton Hosp, Resp, London, England
[9] GlaxoSmithKline, Discovery Med, Stevenage, England
[10] Univ Nottingham, Ctr Resp Res, Nottingham, England
[11] Univ Nottingham, NIHR Biomed Res Ctr, Nottingham, England
[12] Univ Nottingham, Nottingham, England
[13] Univ Nottingham, Resp Med, Nottingham, England
[14] Univ Leicester, Dept Populat Hlth Sci, Leicester, England
[15] Imperial Coll London, London, England
基金
英国医学研究理事会;
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A1007
引用
收藏
页数:2
相关论文
共 40 条
  • [31] Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan
    Ikeda, Kimiyuki
    Chiba, Hirofumi
    Nishikiori, Hirotaka
    Azuma, Arata
    Kondoh, Yasuhiro
    Ogura, Takashi
    Taguchi, Yoshio
    Ebina, Masahito
    Sakaguchi, Hiroki
    Miyazawa, Shogo
    Suga, Moritaka
    Sugiyama, Yukihiko
    Nukiwa, Toshihiro
    Kudoh, Shoji
    Takahashi, Hiroki
    RESPIRATORY RESEARCH, 2020, 21 (01)
  • [32] Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan
    Kimiyuki Ikeda
    Hirofumi Chiba
    Hirotaka Nishikiori
    Arata Azuma
    Yasuhiro Kondoh
    Takashi Ogura
    Yoshio Taguchi
    Masahito Ebina
    Hiroki Sakaguchi
    Shogo Miyazawa
    Moritaka Suga
    Yukihiko Sugiyama
    Toshihiro Nukiwa
    Shoji Kudoh
    Hiroki Takahashi
    Respiratory Research, 21
  • [33] An Exploratory Approach To Course Classification In Multiple Sclerosis Using Machine Learning Techniques Over Optical And Morphometric Analysis Of Oligoclonal Bands
    Gomez-Gonzalez, E.
    Izquierdo-Ayuso, G.
    Gomez, E.
    Guerrero-Claro, M.
    Fernandez-Lizaranzu, I.
    Miron, M.
    Carranco, V.
    Venegas, A.
    Lucas, M.
    Abril-Jaramillo, J.
    Andres, E.
    Granja-Dominguez, A.
    Rosales-Martinez, M.
    Romero-Sevilla, R.
    Matesanz, F.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (1_SUPPL) : 98 - 99
  • [34] Identification of immune patterns in idiopathic pulmonary fibrosis patients driven by PLA2G7-positive macrophages using an integrated machine learning survival framework
    Liu, Tianxi
    Ning, Jingyuan
    Fan, Xiaoqing
    Wei, Huan
    Shi, Guangsen
    Fu, Qingshan Bill
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Classification of multiple primary lung cancer in patients with multifocal lung cancer: assessment of a machine learning approach using multidimensional genomic data
    Pei, Guotian
    Sun, Kunkun
    Yang, Yingshun
    Wang, Shuai
    Li, Mingwei
    Ma, Xiaoxue
    Wang, Huina
    Chen, Libin
    Qin, Jiayue
    Cao, Shanbo
    Liu, Jun
    Huang, Yuqing
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [36] Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases
    Ohno, Yoshiharu
    Aoyagi, Kota
    Takenaka, Daisuke
    Yoshikawa, Takeshi
    Ikezaki, Aina
    Fujisawa, Yasuko
    Murayama, Kazuhiro
    Hattori, Hidekazu
    Toyama, Hiroshi
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 134
  • [37] Prospective machine learning CT quantitative evaluation of idiopathic pulmonary fibrosis in patients undergoing anti-fibrotic treatment using low- and ultra-low-dose CT
    Koo, C. W.
    Larson, N. B.
    Parris-Skeete, C. T.
    Karwoski, R. A.
    Kalra, S.
    Bartholmai, B. J.
    Carmona, E. M.
    CLINICAL RADIOLOGY, 2022, 77 (03) : E208 - E214
  • [38] Comparative scRNA-seq Analysis of Peripheral Blood Mononuclear Cells from Patients with COVID-19 and Idiopathic Pulmonary Fibrosis Demonstrates Dissimilar Cell Shifts and Gene Expression Profiles
    Zhao, A.
    Unterman, A.
    Schupp, J. C.
    Adams, T.
    Sumida, T.
    Ryu, C.
    DeIuliis, G.
    Yan, X.
    Hafler, D.
    Dela Cruz, C.
    Herzog, E.
    Kaminski, N.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [39] An Approach for Combining Clinical Judgment with Machine Learning to Inform Medical Decision Making: Analysis of Nonemergency Surgery Strategies for Acute Appendicitis in Patients with Multiple Long-Term Conditions
    Moler-Zapata, S.
    Hutchings, A.
    Grieve, R.
    Hinchliffe, R.
    Smart, N.
    Moonesinghe, S. R.
    Bellingan, G.
    Vohra, R.
    Moug, S.
    O'Neill, S.
    MEDICAL DECISION MAKING, 2024, 44 (08) : 944 - 960
  • [40] Coupling analysis of diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) with abnormal cerebral blood flow in methamphetamine-dependent patients and its application in machine-learning-based classification
    Cheng, Ping
    Li, Yadi
    Wang, Shuyuan
    Liang, Liang
    Zhang, Mingyu
    Liu, Huifen
    Shen, Wenwen
    Zhou, Wenhua
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 376 : 463 - 472