Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells

被引:0
|
作者
Ye, Tianshi [1 ]
Qiao, Liang [1 ]
Wang, Tao [1 ]
Wang, Pengshuai [1 ]
Zhang, Lin [1 ]
Sun, Ruitian [1 ]
Kong, Weiyu [1 ]
Xu, Menglei [2 ]
Yan, Xunlei [2 ]
Yang, Jie [2 ]
Zhang, Xinyu [2 ]
Yang, Xudong [1 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Zhejiang Jinko Solar Co Ltd, Jiaxing 314416, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Innovat Ctr Future Mat, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
additive engineering; light-induced halide segregation; mixed-halide wide-bandgap perovskites; open-circuit voltage deficit; perovskite/silicon tandem solar cells; HALIDE PEROVSKITES;
D O I
10.1002/adfm.202419391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite/silicon tandem solar cells (TSCs) attract intensive attention because of their potential to deliver power conversion efficiencies (PCE) beyond those of their single-junction counterparts. However, the performance and stability of tandem devices are limited by defect-assisted non-radiative recombination and light-induced halide segregation in wide-bandgap (WBG) perovskite sub-cells. Here, 2-aminoethanesulfonamide hydrochloride (AESCl), with multi-point chelation sites and bridging capability, is incorporated into a 1.68 eV WBG perovskite to comprehensively passivate defects at grain boundaries and surfaces. As a result, AESCl-treated perovskite films show suppressed halide segregation and a champion WBG single-junction solar cell achieves an impressive efficiency of 22.80% with an open-circuit voltage of 1.286 V due to reduced non-radiative recombination. The efficient WBG perovskite sub-cells enable perovskite/silicon TSCs to reach a champion PCE of 30.36% over 1 cm2. Moreover, the tandem devices retain over 96% of their initial efficiency after operation for 1068 h under continuous AM 1.5G illumination at 25 degrees C in ambient air.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells
    Wu, Shengfan
    Yan, Yichao
    Yin, Jun
    Jiang, Kui
    Li, Fengzhu
    Zeng, Zixin
    Tsang, Sai-Wing
    Jen, Alex K. -Y.
    NATURE ENERGY, 2024, 9 (04) : 411 - 421
  • [32] Self-Assembled Amphiphilic Monolayer for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Liu, Lu
    Yang, Yang
    Du, Minyong
    Cao, Yuexian
    Ren, Xiaodong
    Zhang, Lu
    Wang, Hui
    Zhao, Shuai
    Wang, Kai
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2023, 13 (04)
  • [33] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [34] Fluorinated Pyrimidine Bridged Buried Interface for Stable and Efficient Wide-Bandgap Perovskite Solar Cells
    Zhu, Yong
    Xie, Zhewen
    Chang, Xiong
    Wang, Guohua
    Hong, Zhanghua
    Zhou, Mengni
    Li, Kunpeng
    Li, Zhishan
    Wang, Hua
    Zhu, Xing
    Zhu, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (11)
  • [35] Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells
    Sun, Qing
    Zong, Beibei
    Meng, Xiangxin
    Shen, Bo
    Li, Xu
    Kang, Bonan
    Silva, S. Ravi P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6702 - 6713
  • [36] Strain Control of Mixed-Halide Wide-Bandgap Perovskites for Highly Efficient and Stable Solar Cells
    Li, Zhuoxin
    Li, Xing
    Feng, Xuzheng
    Chen, Xianggang
    Chen, Jieqiong
    Cui, Xiaoxia
    La, Sijia
    Yuan, Zhengbo
    Zhang, Zhao
    Wang, Xuanyu
    Pan, Jiahong
    Liu, Xuepeng
    Dai, Songyuan
    Cai, Molang
    SOLAR RRL, 2023, 7 (22)
  • [37] Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells
    Ye, Haoran
    Xu, Weiquan
    Tang, Fei
    Yu, Bohao
    Zhang, Cuiling
    Ma, Nanxi
    Lu, Feiping
    Yang, Yuzhao
    Shen, Kai
    Duan, Weiyuan
    Lambertz, Andreas
    Ding, Kaining
    Mai, Yaohua
    SOLAR RRL, 2023, 7 (03)
  • [38] Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells
    Duan, Chenyang
    Gao, Han
    Xiao, Ke
    Yeddu, Vishal
    Wang, Bo
    Lin, Renxing
    Sun, Hongfei
    Wu, Pu
    Ahmed, Yameen
    Bui, Anh Dinh
    Zheng, Xuntian
    Wang, Yurui
    Wen, Jin
    Wang, Yinke
    Ou, Wennan
    Liu, Chenshuaiyu
    Zhang, Yuhong
    Nguyen, Hieu
    Luo, Haowen
    Li, Ludong
    Liu, Ye
    Luo, Xin
    Saidaminov, Makhsud I.
    Tan, Hairen
    NATURE ENERGY, 2024, : 318 - 328
  • [39] All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites
    Liu, Zhou
    Lin, Renxing
    Wei, Mingyang
    Yin, Mengran
    Wu, Pu
    Li, Manya
    Li, Ludong
    Wang, Yurui
    Chen, Gang
    Carnevali, Virginia
    Agosta, Lorenzo
    Slama, Vladislav
    Lempesis, Nikolaos
    Wang, Zhichao
    Wang, Meiyu
    Deng, Yu
    Luo, Haowen
    Gao, Han
    Rothlisberger, Ursula
    Zakeeruddin, Shaik M.
    Luo, Xin
    Liu, Ye
    Graetzel, Michael
    Tan, Hairen
    NATURE MATERIALS, 2025, 24 (02) : 252 - 259
  • [40] Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells
    Chiang, Yu-Hsien
    Frohna, Kyle
    Salway, Hayden
    Abfalterer, Anna
    Pan, Linfeng
    Roose, Bart
    Anaya, Miguel
    Stranks, Samuel D.
    ACS ENERGY LETTERS, 2023, 8 (06) : 2728 - 2737