Many-body quantum systems;
entanglement;
geometry of entanglement;
MATRIX PRODUCT STATES;
D O I:
10.1142/S0219887825501105
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
A new framework is formulated to study entanglement dynamics in many-body quantum systems along with an associated geometric description. In this formulation, called the Quantum Correlation Transfer Function (QCTF), the system's wave function or density matrix is transformed into a new space of complex functions with isolated singularities. Accordingly, entanglement dynamics is encoded in specific residues of the QCTF, and importantly, the explicit evaluation of the system's time dependence is avoided. Notably, the QCTF formulation allows for various algebraic simplifications and approximations to address the normally encountered complications due to the exponential growth of the many-body Hilbert space with the number of bodies. These simplifications are facilitated by considering the patterns, in lieu of the elements, lying within the system's state. Consequently, a main finding of this paper is the exterior (Grassmannian) algebraic expression of many-body entanglement as the collective areas of regions in the Hilbert space spanned by pairs of projections of the wave function onto an arbitrary basis. This latter geometric measure is shown to be equivalent to the second-order R & eacute;nyi entropy. Additionally, the geometric description of the QCTF shows that characterizing features of the reduced density matrix can be related to experimentally observable quantities. The QCTF-based geometric description offers the prospect of theoretically revealing aspects of many-body entanglement, by drawing on the vast scope of methods from geometry.
机构:
Wigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, HungaryWigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, Hungary
Barcza, G.
Noack, R. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marburg, Fachbereich Phys, D-35032 Marburg, GermanyWigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, Hungary
Noack, R. M.
Solyom, J.
论文数: 0引用数: 0
h-index: 0
机构:
Wigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, HungaryWigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, Hungary
Solyom, J.
Legeza, Oe
论文数: 0引用数: 0
h-index: 0
机构:
Wigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, HungaryWigner Res Ctr Phys, Strongly Correlated Syst Lendulet Res Grp, H-1525 Budapest, Hungary
机构:
Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Univ Hong Kong, HK Inst Quantum Sci & Technol, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Phys, Hong Kong, Peoples R China
Wang, Ting-Tung
Song, Menghan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Univ Hong Kong, HK Inst Quantum Sci & Technol, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Phys, Hong Kong, Peoples R China
Song, Menghan
Lyu, Liuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Phys, Montreal, PQ, CanadaUniv Hong Kong, Dept Phys, Hong Kong, Peoples R China
Lyu, Liuke
Witczak-Krempa, William
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Phys, Montreal, PQ, Canada
Univ Montreal, Inst Courtois, Montreal, PQ, Canada
Univ Montreal, Ctr Rech Math, Montreal, PQ, CanadaUniv Hong Kong, Dept Phys, Hong Kong, Peoples R China
Witczak-Krempa, William
Meng, Zi Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Univ Hong Kong, HK Inst Quantum Sci & Technol, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Phys, Hong Kong, Peoples R China
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
Zhou, Tianci
Nahum, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Theoret Phys, Parks Rd, Oxford OX1 3PU, EnglandUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA