Efficient CRISPR/Cas9 Knock-in Approaches for Manipulation of Endogenous Genes in Human B Lymphoma Cells

被引:0
|
作者
Murray-Nerger, Laura A. [1 ,2 ,3 ,4 ]
Gewurz, Benjamin E. [1 ,2 ,3 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Infect Dis, Boston, MA 02115 USA
[2] Broad Inst Harvard & MIT, Ctr Integrated Solut Infect Dis, Cambridge, MA 02142 USA
[3] Harvard Med Sch, Dept Microbiol, Boston, MA 02115 USA
[4] Harvard Univ, PhD Program Virol, Cambridge, MA 02138 USA
来源
CURRENT PROTOCOLS | 2024年 / 4卷 / 11期
关键词
B cell; CRISPR engineering; CRISPR-mediated knock-in; degron tag; endogenous locus; fluorescent protein tag;
D O I
10.1002/cpz1.70041
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Precise understanding of temporally controlled protein-protein interactions, localization, and expression is often difficult to achieve using traditional overexpression techniques. Recent advances have made CRISPR-based knock-in approaches efficient, which enables rapid derivation of cells with tagged endogenous proteins. However, the high degree of variability in knock-in efficiency across cell types and gene loci poses challenges, in particular with B lymphocytes, which are refractory to lipid transfection. Here, we present detailed protocols for efficient B lymphoma cell CRISPR/Cas9-mediated knock-in. We address knock-in efficiency in two ways. First, we provide a detailed approach for assessing cutting efficiency to select the most efficient single guide RNA for the gene region of interest. Second, we provide detailed approaches for tagging endogenous proteins with a fluorescent marker or instead for co-expressing them with an unlinked fluorescent marker. Either approach facilitates downstream selection of single-cell or bulk populations with the desired knock-in, particularly when knock-in efficiency is low. The utility of this approach is demonstrated via examples of engineering tags onto endogenous protein N- or C-termini, together with downstream analyses. We anticipate that this workflow can be applied more broadly to other cell types for efficient knock-in into endogenous loci. (c) 2024 Wiley Periodicals LLC.Basic Protocol 1: Choosing an optimal knock-in target site and single guide RNA (sgRNA) designBasic Protocol 2: Assessment of Cas9 editing efficiency at the desired B cell genomic knock-in siteBasic Protocol 3: Cloning the sgRNA dual guide constructBasic Protocol 4: Repair template design and cloningBasic Protocol 5: Electroporation and selection of engineered B cellsBasic Protocol 6: Single-cell cloning of engineered B cells
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Targeted knock-in of CreERT2 in zebrafish using CRISPR/Cas9
    Gokul Kesavan
    Juliane Hammer
    Stefan Hans
    Michael Brand
    Cell and Tissue Research, 2018, 372 : 41 - 50
  • [22] Generation of Tβ4 knock-in Cashmere goat using CRISPR/Cas9
    Li, Xiaocong
    Hao, Fei
    Hu, Xiao
    Wang, Hui
    Dai, Bai
    Wang, Xiao
    Liang, Hao
    Cang, Ming
    Liu, Dongjun
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2019, 15 (08): : 1743 - 1754
  • [23] Generation of VEGF knock-in Cashmere goat via the CRISPR/Cas9 system
    Hu, Xiao
    Hao, Fei
    Li, Xiaocong
    Xun, Zhiyuan
    Gao, Yuan
    Ren, Bingxu
    Cang, Ming
    Liang, Hao
    Liu, Dongjun
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2021, 17 (04): : 1026 - 1040
  • [24] Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote
    Raveux, Aurelien
    Vandormael-Pournin, Sandrine
    Cohen-Tannoudji, Michel
    SCIENTIFIC REPORTS, 2017, 7
  • [25] Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote
    Aurélien Raveux
    Sandrine Vandormael-Pournin
    Michel Cohen-Tannoudji
    Scientific Reports, 7
  • [26] Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing
    Benedetta Artegiani
    Delilah Hendriks
    Joep Beumer
    Rutger Kok
    Xuan Zheng
    Indi Joore
    Susana Chuva de Sousa Lopes
    Jeroen van Zon
    Sander Tans
    Hans Clevers
    Nature Cell Biology, 2020, 22 : 321 - 331
  • [27] CRISPR/Cas9 Nuclease-Mediated Gene Knock-In in Bovine-Induced Pluripotent Cells
    Heo, Young Tae
    Quan, Xiaoyuan
    Xu, Yong Nan
    Baek, Soonbong
    Choi, Hwan
    Kim, Nam-Hyung
    Kim, Jongpil
    STEM CELLS AND DEVELOPMENT, 2015, 24 (03) : 393 - 402
  • [28] Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9
    Mandal, Pankaj K.
    Ferreira, Leonardo M. R.
    Collins, Ryan
    Meissner, Torsten B.
    Boutwell, Christian L.
    Friesen, Max
    Vrbanac, Vladimir
    Garrison, Brian S.
    Stortchevoi, Alexei
    Bryder, David
    Musunuru, Kiran
    Brand, Harrison
    Tager, Andrew M.
    Allen, Todd M.
    Talkowski, Michael E.
    Rossi, Derrick J.
    Cowan, Chad A.
    CELL STEM CELL, 2014, 15 (05) : 643 - 652
  • [29] Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9
    Kesavan, Gokul
    Hammer, Juliane
    Hans, Stefan
    Brand, Michael
    CELL AND TISSUE RESEARCH, 2018, 372 (01) : 41 - 50
  • [30] Gene Knock-in by CRISPR/Cas9 and Cell Sorting in Macrophage and T Cell Lines
    Zhang, Lichen
    Huang, Rong
    Lu, Liaoxun
    Fu, Rui
    Guo, Guo
    Gu, Yanrong
    Liu, Zhuangzhuang
    He, Le
    Malissen, Marie
    Liang, Yinming
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (177):