Hexagons govern three-qubit contextuality

被引:0
|
作者
Saniga, Metod [1 ]
Holweck, Frederic [2 ,3 ]
Kelleher, Colm [2 ]
Muller, Axel [4 ]
Giorgetti, Alain [4 ]
de Boutray, Henri [5 ]
机构
[1] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia
[2] Univ Technol Belfort Montbeliard, Lab Interdisciplinaire Carnot Bourgogne, ICB, UTBM,UMR 6303,CNRS, F-90010 Belfort, France
[3] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[4] Univ Marie & Louis Pasteur, CNRS, Inst FEMTO ST, F-25000 Besancon, France
[5] ColibriTD, F-75013 Paris, France
来源
QUANTUM | 2025年 / 9卷
关键词
HIDDEN-VARIABLES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Split Cayley hexagons of order two are distinguished finite geometries living in the three-qubit symplectic polar space in two different forms, called classical and skew. Although neither of the two yields observable-based contextual configurations of their own, classically-embedded copies are found to fully encode contextuality properties of the most prominent three-qubit contextual configurations in the following sense: for each set of unsatisfiable contexts of such a contextual configuration there exists some classically-embedded hexagon sharing with the configuration exactly this set of contexts and nothing else. We demonstrate this fascinating property first on the configuration comprising all 315 contexts of the space and then on doilies, both types of quadrics as well as on complements of skew-embedded hexagons. In connection with the lastmentioned case and elliptic quadrics we also conducted some experimental tests on a findings.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Control and measurement of three-qubit entangled states
    Roos, CF
    Riebe, M
    Häffner, H
    Hänsel, W
    Benhelm, J
    Lancaster, GPT
    Becher, C
    Schmidt-Kaler, F
    Blatt, R
    SCIENCE, 2004, 304 (5676) : 1478 - 1480
  • [42] Topology of the three-qubit space of entanglement types
    Walck, SN
    Glasbrenner, JK
    Lochman, MH
    Hilbert, SA
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [43] Invariants for a class of nongeneric three-qubit states
    Sun Bao-Zhi
    Fei Shao-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (06) : 1007 - 1010
  • [44] Dynamics of three-qubit entanglement in photonic crystals
    Huang, Jie-Hui
    Chen, Zhang-Yang
    Yu, Tian-Bao
    Deng, Xin-Hua
    Liu, Jiang-Tao
    Liu, Nian-Hua
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [45] Quantum steering borders in three-qubit systems
    J. K. Kalaga
    W. Leoński
    Quantum Information Processing, 2017, 16
  • [46] Three-qubit dynamics of entanglement in magnetic field
    Ivanchenko, E.A.
    Fizika Nizkikh Temperatur (Kharkov), 2007, 33 (04): : 455 - 460
  • [47] Linear monogamy of entanglement in three-qubit systems
    Liu, Feng
    Gao, Fei
    Wen, Qiao-Yan
    SCIENTIFIC REPORTS, 2015, 5
  • [48] Note on Implementation of Three-Qubit SWAP Gate
    Wei Hai-Rui
    Di Yao-Min
    Wang Yan
    Zhang Jie
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) : 78 - 82
  • [49] Quantum and classical correlations in three-qubit spin
    Furman, G. B.
    Goren, S. D.
    Meerovich, V. M.
    Sokolovsky, V. L.
    Kozyrev, A. B.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [50] Vector properties of entanglement in a three-qubit system
    Uskov, Dmitry B.
    Alsing, Paul M.
    PHYSICAL REVIEW A, 2020, 102 (03)