Hexagons govern three-qubit contextuality

被引:0
|
作者
Saniga, Metod [1 ]
Holweck, Frederic [2 ,3 ]
Kelleher, Colm [2 ]
Muller, Axel [4 ]
Giorgetti, Alain [4 ]
de Boutray, Henri [5 ]
机构
[1] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia
[2] Univ Technol Belfort Montbeliard, Lab Interdisciplinaire Carnot Bourgogne, ICB, UTBM,UMR 6303,CNRS, F-90010 Belfort, France
[3] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[4] Univ Marie & Louis Pasteur, CNRS, Inst FEMTO ST, F-25000 Besancon, France
[5] ColibriTD, F-75013 Paris, France
来源
QUANTUM | 2025年 / 9卷
关键词
HIDDEN-VARIABLES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Split Cayley hexagons of order two are distinguished finite geometries living in the three-qubit symplectic polar space in two different forms, called classical and skew. Although neither of the two yields observable-based contextual configurations of their own, classically-embedded copies are found to fully encode contextuality properties of the most prominent three-qubit contextual configurations in the following sense: for each set of unsatisfiable contexts of such a contextual configuration there exists some classically-embedded hexagon sharing with the configuration exactly this set of contexts and nothing else. We demonstrate this fascinating property first on the configuration comprising all 315 contexts of the space and then on doilies, both types of quadrics as well as on complements of skew-embedded hexagons. In connection with the lastmentioned case and elliptic quadrics we also conducted some experimental tests on a findings.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Multipartite Entanglement Generation and Contextuality Tests Using Nondestructive Three-Qubit Parity Measurements
    van Dam, S. B.
    Cramer, J.
    Taminiau, T. H.
    Hanson, R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [2] Identification of three-qubit entanglement
    Zhao, Ming-Jing
    Zhang, Ting-Gui
    Li-Jost, Xianqing
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [3] THREE-QUBIT GROVERIAN MEASURE
    Jung, Eylee
    Hwang, Mi-Ra
    Park, Daekil
    Tamaryan, Levon
    Tamaryan, Sayatnova
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (10) : 925 - 942
  • [4] Preparation of three-qubit states
    Perdomo, Oscar
    Castaneda, Nelson
    Vogeler, Roger
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2025, 23 (01)
  • [5] Three-Qubit Randomized Benchmarking
    McKay, David C.
    Sheldon, Sarah
    Smolin, John A.
    Chow, Jerry M.
    Gambetta, Jay M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [6] Entanglement of three-qubit geometry
    Brody, Dorje C.
    Gustavsson, Anna C. T.
    Hughston, Lane P.
    THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY - CONTRIBUTED PAPERS, 2007, 67
  • [7] Proposal for a three-qubit teleportation experiment
    Dragoman, D
    PHYSICS LETTERS A, 2001, 288 (3-4) : 121 - 124
  • [8] A classification of entanglement in three-qubit systems
    C. Sabín
    G. García-Alcaine
    The European Physical Journal D, 2008, 48 : 435 - 442
  • [9] Entanglement criteria for the three-qubit states
    Akbari-Kourbolagh, Y.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (07)
  • [10] Three-Qubit Entanglement Sudden Death
    GE Min~(1
    CommunicationsinTheoreticalPhysics, 2008, 49 (06) : 1443 - 1448