ResMT: A hybrid CNN-transformer framework for glioma grading with 3D MRI

被引:1
|
作者
Cui, Honghao [1 ]
Ruan, Zhuoying [2 ]
Xu, Zhijian [1 ]
Luo, Xiao [1 ]
Dai, Jian [1 ]
Geng, Daoying [1 ,2 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Huashan Hosp, Dept Radiol, Shanghai 200040, Peoples R China
关键词
Glioma grading; Deep learning; Hybrid architecture; Attention mechanisms; Transformer; Magnetic resonance imaging; CENTRAL-NERVOUS-SYSTEM; NETWORK;
D O I
10.1016/j.compeleceng.2024.109745
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate grading of gliomas is crucial for treatment strategies and prognosis. While convolutional neural networks (CNNs) have proven effective in classifying medical images, they struggle with capturing long-range dependencies among pixels. Transformer-based networks can address this issue, but CNN-based methods often perform better when trained on small datasets. Additionally, tumor segmentation is essential for classification models, but training an additional segmentation model significantly increases workload. To address these challenges, we propose ResMT, which combines CNN and transformer architectures for glioma grading, extracting both local and global features efficiently. Specifically, we designed a spatial residual module (SRM) where a 3D CNN captures glioma's volumetric complexity, and Swin UNETR, a pre-trained segmentation model, enhances the network without extra training. Our model also includes a multi-plane channel and spatial attention module (MCSA) to refine the analysis by focusing on critical features across multiple planes (axial, coronal, and sagittal). Transformer blocks establish long-range relationships among planes and slices. We evaluated ResMT on the BraTs19 dataset, comparing it with baselines and state-of-the-art models. Results demonstrate that ResMT achieves the highest prediction performance with an AUC of 0.9953, highlighting hybrid CNN-transformer models' potential for 3D MRI classification.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Rethinking Image Deblurring via CNN-Transformer Multiscale Hybrid Architecture
    Zhao, Qian
    Yang, Hao
    Zhou, Dongming
    Cao, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] Hybrid CNN-transformer network for interactive learning of challenging musculoskeletal images
    Bi, Lei
    Buehner, Ulrich
    Fu, Xiaohang
    Williamson, Tom
    Choong, Peter
    Kim, Jinman
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
  • [33] Rethinking Image Deblurring via CNN-Transformer Multiscale Hybrid Architecture
    Zhao, Qian
    Yang, Hao
    Zhou, Dongming
    Cao, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [34] CNN-Transformer hybrid network for concrete dam crack patrol inspection
    Li, Mingchao
    Yuan, Jingyue
    Ren, Qiubing
    Luo, Qiling
    Fu, Junen
    Li, Zhitang
    AUTOMATION IN CONSTRUCTION, 2024, 163
  • [35] SaltFormer: A hybrid CNN-Transformer network for automatic salt dome detection
    Li, Yang
    Peng, Suping
    He, Dengke
    COMPUTERS & GEOSCIENCES, 2025, 195
  • [36] A CNN-transformer hybrid approach for decoding visual neural activity into text
    Zhang, Jiang
    Li, Chen
    Liu, Ganwanming
    Min, Min
    Wang, Chong
    Li, Jiyi
    Wang, Yuting
    Yan, Hongmei
    Zuo, Zhentao
    Huang, Wei
    Chen, Huafu
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 214
  • [37] Hybrid 3D Medical Image Segmentation Using CNN and Frequency Transformer Fusion
    Labbihi, Ismayl
    Meslouhi, Othmane El
    Elassad, Zouhair Elamrani Abou
    Benaddy, Mohamed
    Kardouchi, Mustapha
    Akhloufi, Moulay
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [38] D-TrAttUnet: Toward hybrid CNN-transformer architecture for generic and subtle segmentation in medical images
    Bougourzi F.
    Dornaika F.
    Distante C.
    Taleb-Ahmed A.
    Computers in Biology and Medicine, 2024, 176
  • [39] Enhancing Winter Wheat Yield Estimation With a CNN-Transformer Hybrid Framework Utilizing Multiple Remotely Sensed Parameters
    Du, Jiangli
    Zhang, Yue
    Wang, Pengxin
    Tansey, Kevin
    Liu, Junming
    Zhang, Shuyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [40] CNN-TransNet: A Hybrid CNN-Transformer Network With Differential Feature Enhancement for Cloud Detection
    Ma, Nan
    Sun, Lin
    He, Yawen
    Zhou, Chenghu
    Dong, Chuanxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20