Path-Planning Method Based on Reinforcement Learning for Cooperative Two-Crane Lift Considering Load Constraint

被引:0
|
作者
An, Jianqi [1 ,2 ,3 ]
Ou, Huimin [1 ,2 ,3 ]
Wu, Min [1 ,2 ,3 ]
Chen, Xin [1 ,2 ,3 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
[3] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Cranes; Load modeling; Three-dimensional displays; Heuristic algorithms; Vehicle dynamics; Payloads; Gravity; Planning; Path planning; Mathematical models; Cooperative two-crane lift; lift-path planning; load distribution; Q-learning; reinforcement learning; ENVIRONMENTS; ROBOT;
D O I
10.1109/TSMC.2025.3539318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a two-crane cooperative lift process, unreasonable load distribution on the two cranes may cause one of the cranes to overload, which may cause a dangerous overturn accident. Therefore, the load distribution should be taken as a constraint to yield a safe path for a cooperative lift. Besides, the load distribution on the two cranes varies with the changing postures of the cranes. However, the explicit relationship between the load distribution and the postures has not been reported. Therefore, this article first presents a relationship model between the postures of the two cranes and the load distribution on them. Next, a new path-planning method based on reinforcement learning is explained, which utilizes the load constraint as the optimization object in the cooperative two-crane lift. Simulation results show that the new method yields a short lift path with reasonable load distribution.
引用
收藏
页码:2913 / 2923
页数:11
相关论文
共 49 条
  • [21] Deceptive Path Planning via Count-Based Reinforcement Learning under Specific Time Constraint
    Chen, Dejun
    Zeng, Yunxiu
    Zhang, Yi
    Li, Shuilin
    Xu, Kai
    Yin, Quanjun
    MATHEMATICS, 2024, 12 (13)
  • [22] Reinforcement learning method based on sample regularization and adaptive learning rate for AGV path planning
    Nie, Jun
    Zhang, Guihua
    Lu, Xiao
    Wang, Haixia
    Sheng, Chunyang
    Sun, Lijie
    NEUROCOMPUTING, 2025, 614
  • [23] UAV two-step path planning method based on integrated constraint strategy
    Chai X.-Z.
    Zhou Y.
    Yan L.
    Liang J.
    Qu B.-Y.
    Bian F.-F.
    Wang H.-Y.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (04): : 1194 - 1202
  • [24] Path Planning Method based on Artificial Potential Field and Reinforcement Learning for Intervention AUVs
    Noguchi, Yukiyasu
    Maki, Toshihiro
    2019 IEEE UNDERWATER TECHNOLOGY (UT), 2019,
  • [25] A path planning method based on deep reinforcement learning for AUV in complex marine environment
    Zhang, An
    Wang, Weixiang
    Bi, Wenhao
    Huang, Zhanjun
    OCEAN ENGINEERING, 2024, 313
  • [26] Path Planning for the Robotic Manipulator in Dynamic Environments Based on a Deep Reinforcement Learning Method
    Jie Liu
    Hwa Jen Yap
    Anis Salwa Mohd Khairuddin
    Journal of Intelligent & Robotic Systems, 111 (1)
  • [27] Q-Learning-based Multi-UAV Cooperative Path Planning Method
    Yin Y.
    Wang X.
    Zhou J.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (02): : 484 - 495
  • [28] Multi-UAV Autonomous Path Planning in Reconnaissance Missions Considering Incomplete Information: A Reinforcement Learning Method
    Chen, Yu
    Dong, Qi
    Shang, Xiaozhou
    Wu, Zhenyu
    Wang, Jinyu
    DRONES, 2023, 7 (01)
  • [29] Deep Reinforcement Learning-Based Distribution Network Planning Method Considering Renewable Energy
    Ma, Liang
    Si, Chenyi
    Wang, Ke
    Luo, Jinshan
    Jiang, Shigong
    Song, Yi
    ENERGIES, 2025, 18 (05)
  • [30] A spacecraft attitude maneuvering path planning method based on PIO-improved reinforcement learning
    Hua B.
    Sun S.
    Wu Y.
    Chen Z.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (02): : 200 - 209