Diffusion models for 3D generation: A survey

被引:0
|
作者
Wang, Chen [1 ]
Peng, Hao-Yang [2 ]
Liu, Ying-Tian [2 ]
Gu, Jiatao [3 ]
Hu, Shi-Min [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[3] Apple, Machine Learning Res, ML, New York, NY USA
来源
COMPUTATIONAL VISUAL MEDIA | 2025年 / 11卷 / 01期
关键词
diffusion models; 3D generation; generative models; AIGC;
D O I
10.26599/CVM.2025.9450452
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Denoising diffusion models have demonstrated tremendous success in modeling data distributions and synthesizing high-quality samples. In the 2D image domain, they have become the state-of-the-art and are capable of generating photo-realistic images with high controllability. More recently, researchers have begun to explore how to utilize diffusion models to generate 3D data, as doing so has more potential in real-world applications. This requires careful design choices in two key ways: identifying a suitable 3D representation and determining how to apply the diffusion process. In this survey, we provide the first comprehensive review of diffusion models for manipulating 3D content, including 3D generation, reconstruction, and 3D-aware image synthesis. We classify existing methods into three major categories: 2D space diffusion with pretrained models, 2D space diffusion without pretrained models, and 3D space diffusion. We also summarize popular datasets used for 3D generation with diffusion models. Along with this survey, we maintain a repository https://github.com/cwchenwang/awesome-3d-diffusion to track the latest relevant papers and codebases. Finally, we pose current challenges for diffusion models for 3D generation, and suggest future research directions.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Diffusion Probabilistic Models for 3D Point Cloud Generation
    Luo, Shitong
    Hu, Wei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2836 - 2844
  • [2] 3D Contour Generation based on Diffusion Probabilistic Models
    Wu, Yiqi
    Huang, Xuan
    Song, Kelin
    He, Fazhi
    Zhang, Dejun
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1992 - 1997
  • [3] TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation
    Kalischek, Nikolai
    Peters, Torben
    Wegner, Jan D.
    Schindler, Konrad
    COMPUTER VISION - ECCV 2024, PT LIII, 2025, 15111 : 357 - 373
  • [4] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [5] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    Scientific Reports, 13 (1)
  • [6] LION: Latent Point Diffusion Models for 3D Shape Generation
    Zeng, Xiaohui
    Vahdat, Arash
    Williams, Francis
    Gojcic, Zan
    Litany, Or
    Fidler, Sanja
    Kreis, Karsten
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] 3D Denoising Diffusion Probabilistic Models for 3D microstructure image generation of fuel cell electrodes
    Bentamou, Abdelouahid
    Chretien, Stephane
    Gavet, Yann
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 248
  • [8] OctFusion: Octree-based Diffusion Models for 3D Shape Generation
    Peking University, China
    不详
    不详
    arXiv,
  • [9] Instant 3D Human Avatar Generation Using Image Diffusion Models
    Kolotouros, Nikos
    Alldiecke, Thiemo
    Corona, Enric
    Bazavan, Eduard Gabriel
    Sminchisescu, Cristian
    COMPUTER VISION - ECCV 2024, PT LXXXVII, 2025, 15145 : 177 - 195
  • [10] A Survey on Segmentation of 3D Models
    He, Chen
    Wang, Chunmeng
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 3835 - 3842