Diffusion Probabilistic Models for 3D Point Cloud Generation

被引:178
|
作者
Luo, Shitong [1 ]
Hu, Wei [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.00286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic model for point cloud generation, which is fundamental for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation. Inspired by the diffusion process in non-equilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath, which diffuse from the original distribution to a noise distribution. Point cloud generation thus amounts to learning the reverse diffusion process that transforms the noise distribution to the distribution of a desired shape. Specifically, we propose to model the reverse diffusion process for point clouds as a Markov chain conditioned on certain shape latent. We derive the variational bound in closed form for training and provide implementations of the model. Experimental results demonstrate that our model achieves competitive performance in point cloud generation and auto-encoding.
引用
收藏
页码:2836 / 2844
页数:9
相关论文
共 50 条
  • [1] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [2] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    [J]. Scientific Reports, 13 (1)
  • [3] BuilDiff: 3D Building Shape Generation using Single-Image Conditional Point Cloud Diffusion Models
    Wei, Yao
    Vosselm, George
    Yang, Michael Ying
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2902 - 2911
  • [4] An adaptive steganography for 3D point cloud models
    Qi Ke
    Xie Dong-qing
    [J]. 2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM), 2012,
  • [5] Learning Progressive Point Embeddings for 3D Point Cloud Generation
    Wen, Cheng
    Yu, Baosheng
    Tao, Dacheng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10261 - 10270
  • [6] DiffFacto: Controllable Part-Based 3D Point Cloud Generation with Cross Diffusion
    Nakayama, George Kiyohiro
    Uy, Mikaela Angelina
    Huang, Jiahui
    Hu, Shi-Min
    Li, Ke
    Guibas, Leonidas
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14211 - 14221
  • [7] Probabilistic 3D Point Cloud Fusion on Graphics Processors for Automotive
    Behmann, Nicolai
    Cheng, Yihan
    Schleusner, Jens
    Blume, Holger
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [8] THE FEASIBILITY OF 3D POINT CLOUD GENERATION FROM SMARTPHONES
    Alsubaie, N.
    El-Sheimy, N.
    [J]. XXIII ISPRS CONGRESS, COMMISSION V, 2016, 41 (B5): : 621 - 626
  • [9] Point Cloud Diffusion Models for Automatic Implant Generation
    Friedrich, Paul
    Wolleb, Julia
    Bieder, Florentin
    Thieringer, Florian M.
    Cattin, Philippe C.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IX, 2023, 14228 : 112 - 122
  • [10] Accelerated Generative Models for 3D Point Cloud Data
    Ben Eckart
    Kim, Kihwan
    Troccoli, Alejandro
    Kelly, Alonzo
    Kautz, Jan
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5497 - 5505