Global solutions to semilinear parabolic equations driven by mixed local-nonlocal operators

被引:0
|
作者
Biagi, Stefano [1 ]
Punzo, Fabio [1 ]
Vecchi, Eugenio [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, ViaBonardi 9, I-20133 Milan, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
BLOW-UP; DIFFUSION-EQUATIONS; HARNACK INEQUALITY; CRITICAL EXPONENTS; HEAT-EQUATION; NONEXISTENCE; ASYMPTOTICS;
D O I
10.1112/blms.13196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local-nonlocal operator L=-Delta+(-Delta)s$\mathcal {L}= -\Delta +(-\Delta)<^>s$, with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条