Molybdenum Disulfide/Diselenide-Laser-Induced Graphene-Glycine Oxidase Composite for Electrochemical Sensing of Glyphosate

被引:2
|
作者
Zribi, Rayhane [1 ,2 ]
Johnson, Zachary T. [3 ]
Ellis, Griffin [3 ]
Banwart, Christopher [3 ]
Opare-Addo, Jemima [4 ,5 ]
Hooe, Shelby L. [6 ]
Breger, Joyce [6 ]
Foti, Antonino [2 ]
Gucciardi, Pietro G. [2 ]
Smith, Emily A. [4 ,5 ]
Gomes, Carmen L. [3 ]
Medintz, Igor L. [6 ]
Neri, Giovanni [1 ]
Claussen, Jonathan C. [3 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] CNR IPCF Ist I Proc Chim Fis, I-98156 Messina, Italy
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[5] US DOE, Ames Lab, Ames, IA 50011 USA
[6] US Naval Res Lab, Ctr Bio Mol Sci & Engn, Washington, DC 20375 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
electrochemical biosensing; transition metal dichalcogenides; molybdenum disulfide; molybdenum diselenide; laser-induced graphene; glyphosate; pesticide sensing;
D O I
10.1021/acsami.4c14042
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The widespread use of the pesticide glyphosate has raised concerns regarding its potential health and environmental impacts. Consequently, there is an increasing demand for monitoring glyphosate levels in surface waters and food products. Currently, there is no commercially available rapid, field-deployable sensor capable of quantifying glyphosate concentrations in environmental samples. This study presents the development of a biosensor based on laser-induced graphene (LIG) that is functionalized with transition metal dichalcogenides (TMDs) and the enzyme glycine oxidase. The LIG is created through a scalable process using a CO2 laser to convert polyimide into a porous, nano/microstructured graphene architecture. The high surface area of LIG acts as a conductive scaffold for subsequent functionalization of both molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) to further improve the electroactive surface area of the electrode. The resultant sensors, functionalizesd with the enzyme, demonstrate linear sensing ranges from 10 to 90 mu M for glyphosate with detection limits of 4.0 and 6.1 mu M for LIG electrodes modified with MoS2 and MoSe2, respectively. Furthermore, the sensors detect glyphosphate at negative working potentials, helping to minimize interference from endogeneous electroactive species and to provide consistent glyphosphate monitoring in actual food products (i.e., soybeans and pinto beans). Overall, the biosensors integrate scalable manufacturing with cost-effective TMDs and LIG, eliminating the need for costly noble metals in the biosensor design, and offering a reliable method for assessing glyphosate in food products.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 50 条
  • [21] Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing
    Costa, Waleska R. P.
    Rocha, Raquel G.
    de Faria, Lucas, V
    Matias, Tiago A.
    Ramos, David L. O.
    Dias, Alessandro G. C.
    Fernandes, Guilherme L.
    Richter, Eduardo M.
    Munoz, Rodrigo A. A.
    MICROCHIMICA ACTA, 2022, 189 (05)
  • [22] Graphene Induced Using 405 nm Laser as Electrode Material for the Electrochemical Sensing Application
    Nasraoui, Salem
    Al-Hamry, Ammar
    Ameur, Sami
    Ben Ali, Mounir
    Kanoun, Olfa
    2019 5TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY FOR INSTRUMENTATION AND MEASUREMENT (NANOFIM), 2019,
  • [23] ELECTROCHEMICAL SENSING OF NICOTINE USING LASER-INDUCED GRAPHENE SCREEN PRINTED ELECTRODE
    Hisham, Balqis nurnadia badrol
    AB Rahim, Rosminazuin
    Nordin, Anis nurashikin
    Ralib, Aliza aini md
    Za'bah, Nor farahidah
    Tung, Lun hao
    Zain, Zainiharyati mohd
    IIUM ENGINEERING JOURNAL, 2025, 26 (01): : 293 - 307
  • [24] Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing
    Waleska R. P. Costa
    Raquel G. Rocha
    Lucas V. de Faria
    Tiago A. Matias
    David L. O. Ramos
    Alessandro G. C. Dias
    Guilherme L. Fernandes
    Eduardo M. Richter
    Rodrigo A. A. Muñoz
    Microchimica Acta, 2022, 189
  • [25] Process-property correlations in laser-induced graphene electrodes for electrochemical sensing
    Behrent, Arne
    Griesche, Christian
    Sippel, Paul
    Baeumner, Antje J.
    MICROCHIMICA ACTA, 2021, 188 (05)
  • [26] Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells
    Ahmad, Khursheed
    Shinde, Mahesh A.
    Kim, Haekyoung
    MICROCHEMICAL JOURNAL, 2021, 169
  • [27] Portable glucose sensing analysis based on laser-induced graphene composite electrode
    Zhang, Zhaokang
    Huang, Lu
    Chen, Yiting
    Qiu, Zhenli
    Meng, Xiangying
    Li, Yanxia
    RSC ADVANCES, 2024, 14 (02) : 1034 - 1050
  • [28] Rapid preparation of CuO composite graphene for portable electrochemical sensing of sulfites based on laser etching technique
    Li, Peng
    Pan, Peng
    Liu, Jun
    Yang, Xiaoping
    Yang, Zhengchun
    Zhou, Jie
    Liu, Guanying
    Shen, Haodong
    Zhang, Xiaodong
    MICROCHEMICAL JOURNAL, 2022, 183
  • [29] Investigation of picosecond laser-induced graphene for dopamine sensing: Influence of laser wavelength on structural and electrochemical performance
    Gaidukevic, Justina
    Trusovas, Romualdas
    Sartanavic, Aivaras
    Pauliukaite, Rasa
    Niaura, Gediminas
    Kozlowski, Mieczyslaw
    Barkauskas, Jurgis
    MATERIALS RESEARCH BULLETIN, 2024, 178
  • [30] Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting
    Kucherenko, Ivan S.
    Chen, Bolin
    Johnson, Zachary
    Wilkins, Alexander
    Sanborn, Delaney
    Figueroa-Felix, Natalie
    Mendivelso-Perez, Deyny
    Smith, Emily A.
    Gomes, Carmen
    Claussen, Jonathan C.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2021, 413 (25) : 6201 - 6212