Molybdenum Disulfide/Diselenide-Laser-Induced Graphene-Glycine Oxidase Composite for Electrochemical Sensing of Glyphosate

被引:2
|
作者
Zribi, Rayhane [1 ,2 ]
Johnson, Zachary T. [3 ]
Ellis, Griffin [3 ]
Banwart, Christopher [3 ]
Opare-Addo, Jemima [4 ,5 ]
Hooe, Shelby L. [6 ]
Breger, Joyce [6 ]
Foti, Antonino [2 ]
Gucciardi, Pietro G. [2 ]
Smith, Emily A. [4 ,5 ]
Gomes, Carmen L. [3 ]
Medintz, Igor L. [6 ]
Neri, Giovanni [1 ]
Claussen, Jonathan C. [3 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] CNR IPCF Ist I Proc Chim Fis, I-98156 Messina, Italy
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[5] US DOE, Ames Lab, Ames, IA 50011 USA
[6] US Naval Res Lab, Ctr Bio Mol Sci & Engn, Washington, DC 20375 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
electrochemical biosensing; transition metal dichalcogenides; molybdenum disulfide; molybdenum diselenide; laser-induced graphene; glyphosate; pesticide sensing;
D O I
10.1021/acsami.4c14042
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The widespread use of the pesticide glyphosate has raised concerns regarding its potential health and environmental impacts. Consequently, there is an increasing demand for monitoring glyphosate levels in surface waters and food products. Currently, there is no commercially available rapid, field-deployable sensor capable of quantifying glyphosate concentrations in environmental samples. This study presents the development of a biosensor based on laser-induced graphene (LIG) that is functionalized with transition metal dichalcogenides (TMDs) and the enzyme glycine oxidase. The LIG is created through a scalable process using a CO2 laser to convert polyimide into a porous, nano/microstructured graphene architecture. The high surface area of LIG acts as a conductive scaffold for subsequent functionalization of both molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) to further improve the electroactive surface area of the electrode. The resultant sensors, functionalizesd with the enzyme, demonstrate linear sensing ranges from 10 to 90 mu M for glyphosate with detection limits of 4.0 and 6.1 mu M for LIG electrodes modified with MoS2 and MoSe2, respectively. Furthermore, the sensors detect glyphosphate at negative working potentials, helping to minimize interference from endogeneous electroactive species and to provide consistent glyphosphate monitoring in actual food products (i.e., soybeans and pinto beans). Overall, the biosensors integrate scalable manufacturing with cost-effective TMDs and LIG, eliminating the need for costly noble metals in the biosensor design, and offering a reliable method for assessing glyphosate in food products.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 50 条
  • [1] Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate
    Johnson, Zachary T.
    Jared, Nathan
    Peterson, John K.
    Li, Jingzhe
    Smith, Emily A.
    Walper, Scott A.
    Hooe, Shelby L.
    Breger, Joyce C.
    Medintz, Igor L.
    Gomes, Carmen
    Claussen, Jonathan C.
    GLOBAL CHALLENGES, 2022, 6 (09)
  • [2] Molybdenum Disulfide/Porous Graphene Composite-based Electrochemical Sensor for Detection of Luteolin
    Xu Bing-Jie
    Xi Jia-Jia
    Feng Ying-Ying
    Zhao Fa-Qiong
    Zeng Bai-Zhao
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2018, 46 (12) : 1931 - 1936
  • [3] Molybdenum disulfide–graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms
    Stelbin Peter Figerez
    Kiran Kumar Tadi
    Krishna Rani Sahoo
    Rahul Sharma
    Ravi K. Biroju
    Aleena Gigi
    K. Aiswarya Anand
    Golap Kalita
    Tharangattu N. Narayanan
    Tungsten, 2020, 2 : 411 - 422
  • [4] A molybdenum disulfide-reduced graphene oxide nanocomposite as an electrochemical sensing platform for detecting cyproterone acetate
    Wu, Yanju
    Liu, Didi
    Guo, Jiahua
    Wang, Fei
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (11) : 5385 - 5392
  • [5] Molybdenum disulfide-graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms
    Figerez, Stelbin Peter
    Tadi, Kiran Kumar
    Sahoo, Krishna Rani
    Sharma, Rahul
    Biroju, Ravi K.
    Gigi, Aleena
    Anand, K. Aiswarya
    Kalita, Golap
    Narayanan, Tharangattu N.
    TUNGSTEN, 2020, 2 (04) : 411 - 422
  • [6] Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene
    Pereira, Sonia O.
    Santos, Nuno F.
    Carvalho, Alexandre F.
    Fernandes, Antonio J. S.
    Costa, Florinda M.
    NANOMATERIALS, 2021, 11 (08)
  • [7] Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine
    Sharma, Sarda
    Ganeshan, Sankalp Koduvayur
    Pattnaik, Prasant Kumar
    Kanungo, Sayan
    Chappanda, Karumbaiah N.
    MATERIALS LETTERS, 2020, 262
  • [8] Laser-Induced Graphene for Electrochemical Sensing of Antioxidants in Biodiesel
    Sevene, Daniel R.
    Matias, Tiago A.
    Araujo, Diele A. G.
    Inoque, Nelio I. G.
    Nakamura, Marcelo
    Paixao, Thiago R. L. C.
    Munoz, Rodrigo A. A.
    ACS OMEGA, 2024, 10 (01): : 368 - 377
  • [9] Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene
    Johnson, Zachary T.
    Williams, Kelli
    Chen, Bolin
    Sheets, Robert
    Jared, Nathan
    Li, Jingzhe
    Smith, Emily A.
    Claussen, Jonathan C.
    ACS SENSORS, 2021, 6 (08) : 3063 - 3071
  • [10] Amperometric sensing of hydroquinone using a glassy carbon electrode modified with a composite consisting of graphene and molybdenum disulfide
    Huang, Huayu
    Zhang, Jiangyi
    Cheng, Meimei
    Liu, Kunping
    Wang, Xingyu
    MICROCHIMICA ACTA, 2017, 184 (12) : 4803 - 4808