CTBANet: A new method for state of health estimation of lithium-ion batteries

被引:0
|
作者
Zhu, Qinglin [1 ]
Zeng, Xiangfeng [1 ]
Wang, Zhangu [1 ]
Zhao, Ziliang [1 ]
Zhang, Lei [1 ]
Wang, Junqiang [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Transportat, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; Data preprocessing; Decomposition; State of health estimation; Deep learning; PREDICTION;
D O I
10.1016/j.est.2025.116134
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The key index to characterize the lifespan of lithium-ion batteries is the state of health (SOH), and accurate SOH estimation is fundamental for the secure operation of batteries. Based on modal decomposition and deep learning, a novel SOH estimation method named CTBANet is proposed in this study, which is composed of a CEEMDAN (Complete Ensemble mode decomposition with Adaptive Noise) module, TCN (Temporary Convolutional Network), BiLSTM (Bi-directional Long Short-Term Memory) and Attention mechanism. During data preprocessing, the battery capacity is decomposed into various Intrinsic Mode Functions (IMFs) with diverse frequencies by the CEEMDAN algorithm. This can obtain the local regeneration characteristics of battery aging. The components with high correlation are selected by Pearson correlation analysis to reduce the calculation costs. Then, the deep learning part of the proposed method is used to estimate SOH. Among them, TCN uses causal dilated convolution to extract hidden information among variables in the feature matrix, which improves the ability of the model to extract time data features. Then BiLSTM combines bidirectional processing with longsequence modeling, which makes the model effectively predict the state of the next moment under the given long-time series. In addition, the Attention module emphasizes the important features by assigning weights to the BiLSTM output sequence to improve estimation accuracy. The effectiveness of the CTBANet method is verified by setting up multiple groups of experiments on the NASA dataset and the Oxford dataset. And MAE, MSE, and RMSE of each group of experimental results are within 0.6 %, 0.005 %, and 0.7 % respectively, which shows that the CTBANet method can precisely estimate the SOH of lithium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [32] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [33] A state of health rapid assessment method for decommissioned lithium-ion batteries
    Huang J.
    Li J.
    Li Z.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (12): : 25 - 32
  • [34] State of health estimation of lithium-ion batteries based on a novel indirect health indicator
    Lin, Da
    Zhang, Xuesong
    Wang, Lulu
    Zhao, Bo
    ENERGY REPORTS, 2022, 8 : 606 - 613
  • [35] Modeling and health feature extraction method for lithium-ion batteries state of health estimation by distribution of relaxation times
    Su, Zhipeng
    Lai, Jidong
    Su, Jianhui
    Zhou, Chenguang
    Shi, Yong
    Xie, Bao
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [36] A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction
    Ma, Yan
    Shan, Ce
    Gao, Jinwu
    Chen, Hong
    ENERGY, 2022, 251
  • [37] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [38] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105
  • [39] Fast Estimation of State of Charge for Lithium-Ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    ENERGIES, 2014, 7 (05) : 3438 - 3452
  • [40] State of health estimation of lithium-ion batteries based on remaining area capacity
    Lin, Zhicheng
    Hu, Houpeng
    Liu, Wei
    Zhang, Zixia
    Zhang, Ya
    Geng, Nankun
    Liao, Qiangqiang
    JOURNAL OF ENERGY STORAGE, 2023, 63