Embrogami: Shape-Changing Textiles with Machine Embroidery

被引:2
|
作者
Jiang, Yu [1 ]
Haynes, Alice C. [1 ]
Pourjafarian, Narjes [2 ]
Borchers, Jan [3 ]
Stein-de, Juergen [1 ]
机构
[1] Saarland Univ, Saarland Informat Campus, Saarbrucken, Saarland, Germany
[2] Cornell Univ, Ithaca, NY USA
[3] Rhein Westfal TH Aachen, Aachen, Germany
来源
PROCEEDINGS OF THE 37TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, USIT 2024 | 2024年
关键词
Fabrication; machine embroidery; shape-change; e-textiles;
D O I
10.1145/3654777.3676431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine embroidery is a versatile technique for creating custom and entirely fabric-based patterns on thin and conformable textile surfaces. However, existing machine-embroidered surfaces remain static, limiting the interactions they can support. We introduce Embrogami, an approach for fabricating textile structures with versatile shape-changing behaviors. Inspired by origami, we leverage machine embroidery to form fnger-tip-scale mountain-and-valley structures on textiles with customized shapes, bistable or elastic behaviors, and modular composition. The structures can be actuated by the user or the system to modify the local textile surface topology, creating interactive elements like toggles and sliders or textile shape displays with an ultra-thin, fexible, and integrated form factor. We provide a dedicated software tool and report results of technical experiments to allow users to fexibly design, fabricate, and deploy customized Embrogami structures. With four application cases, we showcase Embrogami's potential to create functional and fexible shape-changing textiles with diverse visuo-tactile feedback.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Frontiers in Flexible and Shape-Changing Arrays
    Fikes, Austin C.
    Gal-Katziri, Matan
    Mizrahi, Oren S.
    Williams, D. Elliott
    Hajimiri, Ali
    IEEE JOURNAL OF MICROWAVES, 2023, 3 (01): : 349 - 367
  • [22] Reconfigurable Assemblies of Shape-Changing Nanorods
    Nguyen, Trung Dac
    Glotzer, Sharon C.
    ACS NANO, 2010, 4 (05) : 2585 - 2594
  • [23] Control of Locomotion with Shape-Changing Wheels
    Mellinger, Daniel
    Kumar, Vijay
    Yim, Mark
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 1883 - 1888
  • [24] Recognition of shape-changing hand gestures
    Jeong, MH
    Kuno, Y
    Shimada, N
    Shirai, Y
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2002, E85D (10): : 1678 - 1687
  • [25] ShapeBots: Shape-changing Swarm Robots
    Suzuki, Ryo
    Zheng, Clement
    Kakehi, Yasuaki
    Yeh, Tom
    Do, Ellen Yi-Luen
    Gross, Mark D.
    Leithinger, Daniel
    PROCEEDINGS OF THE 32ND ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST 2019), 2019, : 493 - 505
  • [26] Shape-Memory Polymers and Shape-Changing Polymers
    Behl, Marc
    Zotzmann, Joerg
    Lendlein, Andreas
    SHAPE-MEMORY POLYMERS, 2010, 226 : 1 - 40
  • [27] A Programmable Shape-Changing Scaffold for Regenerative Medicine
    Tseng, Ling-Fang
    Mather, Patrick T.
    Henderson, James H.
    2012 38TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE (NEBEC), 2012, : 227 - +
  • [28] Untethered shape-changing devices in the gastrointestinal tract
    Liu, Wangqu
    Choi, Soo Jin
    George, Derosh
    Li, Ling
    Zhong, Zijian
    Zhang, Ruili
    Choi, Si Young
    Selaru, Florin M.
    Gracias, David H.
    EXPERT OPINION ON DRUG DELIVERY, 2023, 20 (12) : 1801 - 1822
  • [29] Fostering Design Process of Shape-Changing Interfaces
    Kim, Hyunyoung
    ADJUNCT PUBLICATION OF THE 31ST ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST'18 ADJUNCT), 2018, : 224 - 227
  • [30] Light-Responsive Shape-Changing Polymers
    Stoychev, Georgi
    Kirillova, Alina
    Ionov, Leonid
    ADVANCED OPTICAL MATERIALS, 2019, 7 (16):